We report results of a megabase-scale phylogenomic analysis of the Reptilia, the sister group of mammals. Large-scale end-sequence scanning of genomic clones of a turtle, alligator, and lizard reveals diverse, mammal-like landscapes of retroelements and simple sequence repeats (SSRs) not found in the chicken. Several global genomic traits, including distinctive phylogenetic lineages of CR1-like long interspersed elements (LINEs) and a paucity of A-T rich SSRs, characterize turtles and archosaur genomes, whereas higher frequencies of tandem repeats and a lower global GC content reveal mammal-like features in Anolis. Nonavian reptile genomes also possess a high frequency of diverse and novel 50-bp unit tandem duplications not found in chicken or mammals. The frequency distributions of Ϸ65,000 8-mer oligonucleotides suggest that rates of DNA-word frequency change are an order of magnitude slower in reptiles than in mammals. These results suggest a diverse array of interspersed and SSRs in the common ancestor of amniotes and a genomic conservatism and gradual loss of retroelements in reptiles that culminated in the minimalist chicken genome.BAC ͉ Reptilia ͉ retroelement ͉ isochore ͉ intron
Multi-subject functional magnetic resonance imaging (fMRI) data has been increasingly used to study the population-wide relationship between human brain activity and individual biological or behavioral traits. A common method is to regress the scalar individual response on imaging predictors, known as a scalar-on-image (SI) regression. Analysis and computation of such massive and noisy data with complex spatio-temporal correlation structure is challenging. In this article, motivated by a psychological study on human affective feelings using fMRI, we propose a joint Ising and Dirichlet Process (Ising-DP) prior within the framework of Bayesian stochastic search variable selection for selecting brain voxels in high-dimensional SI regressions. The Ising component of the prior makes use of the spatial information between voxels, and the DP component groups the coefficients of the large number of voxels to a small set of values and thus greatly reduces the posterior computational burden. To address the phase transition phenomenon of the Ising prior, we propose a new analytic approach to derive bounds for the hyperparameters, illustrated on 2-and 3-dimensional lattices. The proposed method is compared with several alternative methods via simulations, and is applied to the fMRI data collected from the KLIFF hand-holding experiment.
We introduce a dynamic directional model (DDM) for studying brain effective connectivity based on intracranial electrocorticographic (ECoG) time series. The DDM consists of two parts: a set of differential equations describing neuronal activity of brain components (state equations), and observation equations linking the underlying neuronal states to observed data. When applied to functional MRI or EEG data, DDMs usually have complex formulations and thus can accommodate only a few regions, due to limitations in spatial resolution and/or temporal resolution of these imaging modalities. In contrast, we formulate our model in the context of ECoG data. The combined high temporal and spatial resolution of ECoG data result in a much simpler DDM, allowing investigation of complex connections between many regions. To identify functionally segregated sub-networks, a form of biologically economical brain networks, we propose the Potts model for the DDM parameters. The neuronal states of brain components are represented by cubic spline bases and the parameters are estimated by minimizing a log-likelihood criterion that combines the state and observation equations. The Potts model is converted to the Potts penalty in the penalized regression approach to achieve sparsity in parameter estimation, for which a fast iterative algorithm is developed. The methods are applied to an auditory ECoG dataset.
In this article, a stepwise procedure, correlation pursuit (COP), is developed for variable selection under the sufficient dimension reduction framework, in which the response variable Y is influenced by the predictors X1, X2, …, Xp through an unknown function of a few linear combinations of them. Unlike linear stepwise regression, COP does not impose a special form of relationship (such as linear) between the response variable and the predictor variables. The COP procedure selects variables that attain the maximum correlation between the transformed response and the linear combination of the variables. Various asymptotic properties of the COP procedure are established, and in particular, its variable selection performance under diverging number of predictors and sample size has been investigated. The excellent empirical performance of the COP procedure in comparison with existing methods are demonstrated by both extensive simulation studies and a real example in functional genomics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.