Scientific applications require solvers that work on many small size problems that are independent from each other. At the same time, the high-end hardware evolves rapidly and becomes ever more throughput-oriented and thus there is an increasing need for an effective approach to develop energy-efficient, high-performance codes for these small matrix problems that we call batched factorizations. The many applications that need this functionality could especially benefit from the use of GPUs, which currently are four to five times more energy efficient than multicore CPUs on important scientific workloads. This paper, consequently, describes the development of the most common, one-sided factorizations, Cholesky, LU, and QR, for a set of small dense matrices. The algorithms we present together with their implementations are, by design, inherently parallel. In particular, our approach is based on representing the process as a sequence of batched BLAS routines that are executed entirely on a GPU. Importantly, this is unlike the LAPACK and the hybrid MAGMA factorization algorithms that work under drastically different assumptions of hardware design and efficiency of execution of the various computational kernels involved in the implementation. Thus, our approach is more efficient than what works for a combination of multicore CPUs and GPUs for the problems sizes of interest of the application use cases. The paradigm where upon a single chip (a GPU or a CPU) factorizes a single problem at a time is not at all efficient in our applications’ context. We illustrate all of these claims through a detailed performance analysis. With the help of profiling and tracing tools, we guide our development of batched factorizations to achieve up to two-fold speedup and three-fold better energy efficiency as compared against our highly optimized batched CPU implementations based on MKL library. The tested system featured two sockets of Intel Sandy Bridge CPUs and we compared with a batched LU factorizations featured in the CUBLAS library for GPUs, we achieve as high as 2.5× speedup on the NVIDIA K40 GPU.
Power and energy consumption are becoming an increasing concern in high performance computing. Compared to multi-core CPUs, GPUs have a much better performance per watt. In this paper we discuss efforts to redesign the most computation intensive parts of BLAST, an application that solves the equations for compressible hydrodynamics with high order finite elements, using GPUs [10,1]. In order to exploit the hardware parallelism of GPUs and achieve high performance, we implemented custom linear algebra kernels. We intensively optimized our CUDA kernels by exploiting the memory hierarchy, which exceed the vendor's library routines substantially in performance. We proposed an autotuning technique to adapt our CUDA kernels to the orders of the finite element method. Compared to a previous base implementation, our redesign and optimization lowered the energy consumption of the GPU in two aspects: 60% less time to solution and 10% less power required. Compared to the CPU-only solution, our GPU accelerated BLAST obtained a 2.5× overall speedup and 1.42× energy efficiency (greenup) using 4th order (Q4) finite elements, and a 1.9× speedup and 1.27× greenup using 2nd order (Q2) finite elements.
GPUs are excellent accelerators for data parallel applications with regular data access patterns. It is challenging, however, to optimize computations with irregular data access patterns on GPUs. One such computation is the Symmetric Matrix Vector product (SYMV) for dense linear algebra. Optimizing the SYMV kernel is important because it forms the basis of fundamental algorithms such as linear solvers and eigenvalue solvers on symmetric matrices. In this work, we present a new algorithm for optimizing the SYMV kernel on GPUs. Our optimized SYMV in single precision brings up to a 7× speed up compared to the (latest) CUBLAS 4.0 NVIDIA library on the GTX 280 GPU. Our SYMV kernel tuned for Fermi C2050 is 4.5× faster than CUBLAS 4.0 in single precision and 2× faster than CUBLAS 4.0 in double precision. Moreover, the techniques used and described in the paper are general enough to be of interest for developing high-performance GPU kernels beyond the particular case of SYMV.
SUMMARYFor software to fully exploit the computing power of emerging heterogeneous computers, not only must the required computational kernels be optimized for the specific hardware architectures but also an effective scheduling scheme is needed to utilize the available heterogeneous computational units and to hide the communication between them. As a case study, we develop a static scheduling scheme for the tridiagonalization of a symmetric dense matrix on multicore CPUs with multiple graphics processing units (GPUs) on a single compute node. We then parallelize and optimize the Basic Linear Algebra Subroutines (BLAS)‐2 symmetric matrix‐vector multiplication, and the BLAS‐3 low rank symmetric matrix updates on the GPUs. We demonstrate the good scalability of these multi‐GPU BLAS kernels and the effectiveness of our scheduling scheme on twelve Intel Xeon processors and three NVIDIA GPUs. We then integrate our hybrid CPU‐GPU kernel into computational kernels at higher‐levels of software stacks, that is, a shared‐memory dense eigensolver and a distributed‐memory sparse eigensolver. Our experimental results show that our kernels greatly improve the performance of these higher‐level kernels, not only reducing the solution time but also enabling the solution of larger‐scale problems. Because such symmetric eigenvalue problems arise in many scientific and engineering simulations, our kernels could potentially lead to new scientific discoveries. Furthermore, these dense linear algebra algorithms present algorithmic characteristics that can be found in other algorithms. Hence, they are not only important computational kernels on their own but also useful testbeds to study the performance of the emerging computers and the effects of the various optimization techniques. Copyright © 2013 John Wiley & Sons, Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.