Efficient storage and sharing of massive biomedical data would open up their wide accessibility to different institutions and disciplines. However, compressors tailored for natural photos/videos are rapidly limited for biomedical data, while emerging deep learning based methods demand huge training data and are difficult to generalize. Here we propose to conduct biomedical data compRession with Implicit nEural Function (BRIEF) by representing the original data with compact deep neural networks, which are data specific and thus have no generalization issues. Benefiting from the strong representation capability of implicit neural function, BRIEF achieves significantly higher-fidelity on diverse biomedical data than existing techniques. Besides, BRIEF is of consistent performance across the whole data volume, supports customized spatially-varying fidelity. BRIEF's multi-fold advantageous features also serve reliable downstream tasks at low bandwidth. Our approach will facilitate biomedical data sharing at low bandwidth and maintenance costs, and promote collaboration and progress in the biomedical field.
Massive collection and explosive growth of biomedical data, demands effective compression for efficient storage, transmission and sharing. Readily available visual data compression techniques have been studied extensively but tailored for natural images/videos, and thus show limited performance on biomedical data which are of different features and larger diversity. Emerging implicit neural representation (INR) is gaining momentum and demonstrates high promise for fitting diverse visual data in target-data-specific manner, but a general compression scheme covering diverse biomedical data is so far absent. To address this issue, we firstly derive a mathematical explanation for INR's spectrum concentration property and an analytical insight on the design of INR based compressor. Further, we propose a Spectrum Concentrated Implicit neural compression (SCI) which adaptively partitions the complex biomedical data into blocks matching INR's concentrated spectrum envelop, and design a funnel shaped neural network capable of representing each block with a small number of parameters. Based on this design, we conduct compression via optimization under given budget and allocate the available parameters with high representation accuracy. The experiments show SCI's superior performance to state-of-the-art methods including commercial compressors, data-driven ones, and INR based counterparts on diverse biomedical data. The source code can be found at https://github.com/RichealYoung/ImplicitNeuralCompression.git.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.