Daphnia is a freshwater crustacean that is able to upregulate hemoglobin (Hb) in response to hypoxia, imparting a red color. We combine multiple field surveys across season with a lab experiment to evaluate changes in the metabolic phenotype of Daphnia in relation to environmental hypoxia. Looking at the zooplankton community, we found that D. pulicaria was restricted to lakes with a hypoxic hypolimnion. Comparing D. pulicaria with different amounts of Hb, red animals showed higher mRNA levels for several Hb genes, whereas most glycolytic genes showed red/pale differences of less than 50%. We also observed seasonal changes in the metabolic phenotype that differed between red and pale animals. Hb was upregulated early in the season in hypoxic lakes, and a relationship between Hb and lactate dehydrogenase only emerged later in the season in a temporal pattern that was lake specific. To evaluate whether these differences were due to specific lake environments or microevolutionary differences, we tested the induction of genes under controlled hypoxia in isofemale lines from each of four lakes. We found a strong response to 18 h hypoxia exposure in both Hb and lactate dehydrogenase mRNA, although the magnitude of the acute response was greater than the steady state differences in mRNA levels between pale and red Daphnia. The baseline expression of Hb and lactate dehydrogenase also varied between isofemale lines with different lake origins. These results, in combination with comparison of glycogen measurements, suggests that Hb functions primarily to facilitate oxygen delivery, mitigating systemic hypoxia, rather than an oxygen store. The combination of lab and field studies suggest that the metabolic phenotype of the animal is influenced by both microevolutionary differences (within and between lakes) as well as the spatial and temporal environmental heterogeneity of the lakes. The differences between Daphnia species, and the unexpected lack of hypoxia sensitivity of select glycolytic genes provide evidence of macroevolutionary differences in metabolic strategies to cope with hypoxia.
BACKGROUND: Tebufenozide is widely used to control populations of the smaller tea tortrix, Adoxophyes honmai. However, A. honmai has evolved resistance such that straightforward pesticide application is an untenable long-term approach for population control. Evaluating the fitness cost of resistance is key to devising a management strategy that slows the evolution of resistance.RESULTS: We used three approaches to assess the life-history cost of tebufenozide resistance with two strains of A. honmai: a tebufenozide-resistant strain recently collected from the field in Japan and a susceptible strain that has been maintained in the laboratory for decades. First, we found that the resistant strain with standing genetic variation did not decline in resistance in the absence of insecticide over four generations. Second, we found that genetic lines that spanned a range of resistance profiles did not show a negative correlation between their LD 50 , the dosage at which 50 % of individuals died, and life-history traits that are correlates of fitness. Third, we found that the resistant strain did not manifest life-history costs under food limitation. Our crossing experiments indicate that the allele at an ecdysone receptor locus known to confer resistance explained much of the variance in resistance profiles across genetic lines. CONCLUSION: Our results indicate that the point mutation in the ecdysone receptor, which is widespread in tea plantations in Japan, does not carry a fitness cost in the tested laboratory conditions. The absence of a cost of resistance and the mode of inheritance have implications for which strategies may be effective in future resistance management efforts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.