Extinction is considered a core mechanism underlying exposure-based therapy in anxiety-related disorders. However, marked impairments in threat extinction learning coupled with impaired neuroplasticity in patients strongly impede the efficacy of exposure-based interventions. Recent translational research suggests a role of the renin-angiotensin (RA) system in both these processes. However, the efficacy of pharmacological modulation of the RA system to enhance threat extinction in humans and the underlying neural mechanisms remain unclear. The present pre-registered, randomized placebo-controlled pharmacological neuroimaging trial demonstrates that pre-extinction administration of the angiotensin II type 1 receptor antagonist losartan accelerated attenuation of the psychophysiological threat response during extinction.On the neural level the acceleration of extinction was accompanied by threat-signal specific enhanced ventromedial prefrontal cortex (vmPFC) activation and its coupling with the basolateral amygdala. Multivoxel pattern analysis and voxel-wise mediation analysis further revealed that that losartan reduced the neural threat expression, particularly in the vmPFC, and confirmed that acceleration of extinction critically involved treatment-induced modulation of vmPFC activation. Overall the results provide the first evidence for a pivotal role of the RA system in extinction learning in humans and suggest that adjunct losartan administration can be leveraged to facilitate the efficacy of extinction-based therapies..
Investigations of fear conditioning in rodents and humans have illuminated the neural mechanisms of fear acquisition and extinction. However, the neural mechanism of memory consolidation of fear conditioning is not well understood. To address this question, we measured brain activity and the changes in functional connectivity following fear acquisition using resting-state functional magnetic resonance imaging. The amygdala-dorsal anterior cingulate cortex (dACC) and hippocampus-insula functional connectivity were enhanced, whereas the amygdala-medial prefrontal cortex (mPFC) functional coupling was decreased during fear memory consolidation. Furthermore, the amygdala-mPFC functional connectivity was negatively correlated with the subjective fear ratings. These findings suggest the amygdala functional connectivity with dACC and mPFC may play an important role in memory consolidation of fear conditioning. The change of amygdala-mPFC functional connectivity could predict the subjective fear. Accordingly, this study provides a new perspective for understanding fear memory consolidation.
Increased anxiety in response to the COVID-19 pandemic has been widely noted. The purpose of this study was to test whether the prepandemic functional connectome predicted individual anxiety induced by the pandemic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.