Numba is a game-changing compiler for high-performance computing with Python. It produces machine code that runs outside of the single-threaded Python interpreter and that fully utilizes the resources of modern CPUs. This means support for parallel multithreading and auto-vectorization if available, as with compiled languages such as C++ or Fortran. In this article we document our experience developing PyExaFMM, a multithreaded Numba implementation of the Fast Multipole Method, an algorithm with a non-linear data structure and a large amount of data organization. We find that designing performant Numba code for complex algorithms can be as challenging as writing in a compiled language.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.