Indoleamine 2,3-dioxygenase (IDO) is an immunosuppressive enzyme that contributes to tolerance in a number of biological settings. In cancer, IDO activity may help promote acquired tolerance to tumor antigens. The IDO inhibitor 1-methyltryptophan is being developed for clinical trials. However, 1-methyl-tryptophan exists in two stereoisomers with potentially different biological properties, and it has been unclear which isomer might be preferable for initial development. In this study, we provide evidence that the D and L stereoisomers exhibit important cell type-specific variations in activity. The L isomer was the more potent inhibitor of IDO activity using the purified enzyme and in HeLa cell-based assays. However, the D isomer was significantly more effective in reversing the suppression of T cells created by IDO-expressing dendritic cells, using both human monocyte-derived dendritic cells and murine dendritic cells isolated directly from tumor-draining lymph nodes. In vivo, the D isomer was more efficacious as an anticancer agent in chemo-immunotherapy regimens using cyclophosphamide, paclitaxel, or gemcitabine, when tested in mouse models of transplantable melanoma and transplantable and autochthonous breast cancer. The D isomer of 1-methyl-tryptophan specifically targeted the IDO gene because the antitumor effect of D-1-methyl-tryptophan was completely lost in mice with a disruption of the IDO gene (IDO-knockout mice). Taken together, our findings support the suitability of D-1-methyl-tryptophan for human trials aiming to assess the utility of IDO inhibition to block hostmediated immunosuppression and enhance antitumor immunity in the setting of combined chemo-immunotherapy regimens. [Cancer Res 2007;67(2):792-801]
Agents that interfere with tumoral immune tolerance may be useful to prevent or treat cancer. Brassinin is a phytoalexin, a class of natural products derived from plants that includes the widely known compound resveratrol. Brassinin has been demonstrated to have chemopreventive activity in preclinical models but the mechanisms underlying its anticancer properties are unknown. Here, we show that brassinin and a synthetic derivative 5-bromo-brassinin (5-Br-brassinin) are bioavailable inhibitors of indoleamine 2,3-dioxygenase (IDO), a pro-toleragenic enzyme that drives immune escape in cancer. Like other known IDO inhibitors, both of these compounds combined with chemotherapy to elicit regression of autochthonous mammary gland tumors in MMTV-Neu mice. Furthermore, growth of highly aggressive melanoma isograft tumors was suppressed by single agent treatment with 5-Br-brassinin. This response to treatment was lost in athymic mice, indicating a requirement for active host T-cell immunity, and in IDO-null knockout mice, providing direct genetic evidence that IDO inhibition is essential to the antitumor mechanism of action of 5-Br-brassinin. The natural product brassinin thus provides the structural basis for a new class of compounds with in vivo anticancer activity that is mediated through the inhibition of IDO.
A screen of indole-based structures revealed the natural product brassinin to be a moderate inhibitor of indoleamine 2,3-dioxygenase (IDO), a new cancer immunosuppression target. A structure-activity study was undertaken to determine which elements of the brassinin structure could be modified to enhance potency. Three important discoveries have been made, which will impact future IDO inhibitor development: (i) The dithiocarbamate portion of the brassinin lead is a crucial moiety, which may be binding to the heme iron of IDO; (ii) an indole ring is not necessary for IDO inhibition; and (iii) substitution of the S-methyl group of brassinin with large aromatic groups provides inhibitors that are three times more potent in vitro than the most commonly used IDO inhibitor, 1-methyl-tryptophan.
SummaryDue to their role in oxygen transport and the presence of redox active haemoglobin molecules, red blood cells (RBC) generate relatively high levels of reactive oxygen species (ROS). To counteract the potential deleterious effects of ROS, RBCs have a well-integrated network of anti-oxidant mechanisms to combat this oxidative stress. ROS formation is increased in sickle-cell disease (SCD) and our studies in a murine SCD model showed a significant increase in the generation of ROS when compared with normal mice. Our data also indicated that murine sickle RBCs exhibit a significantly increased ATP catabolism, partly due to the increased activity of glucose-6-phosphate dehydrogenase and glutathione reductase to regenerate intracellular glutathione (GSH) levels to neutralize the adverse milieu of oxidative stress. Higher ATP consumption by the murine sickle RBCs, together with the increased ROS formation and impairment of the aminophospholipid translocase or flipase may underlie the exposure of phosphatidylserine on the surface of these cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.