When Kuhn and Tucker proved the Kuhn-Tucker theorem in 1950 they launched the theory of nonlinear programming. However, in a sense this theorem had been proven already: In 1939 by W. Karush in a master's thesis, which was unpublished; in 1948 by F. John in a paper that was at first rejected by the Duke Mathematical Journal; and possibly earlier by Ostrogradsky and Farkas. The questions of whether the Kuhn-Tucker theorem can be seen as a multiple discovery and why the different occurences of the theorem were so differently received by the mathematical communities are discussed on the basis of a contextualized historical analysis of these works. The significance of the contexts both mathematically and socially for these questions is discussed, including the role played by the military in the shape of Office of Naval Research (ONR) and operations research (OR).
In the present study it is discussed how the moment problem naturally arose within Stieltjes' creation of the analytical theory of continued fractions. Further it is shown how the moment problem in the work of Hamburger came to be regarded as an important problem in its own right. From then on it moved away from its origin into other fields of mathematics--complex function theory and functional analysis--in the work of Nevanlinna and M. Riesz respectively. In the end it was made completely independent from continued fractions.In dieser Arbeit wird dargelegt, wie das Momentproblem in natiirlicher Weise wfihrend Stieltjes' Entwicklung der analytischen Theorie der Kettenbriiche entstand. Es wird weitero hin gezeigt, wie sich dieses Problem in den Arbeiten von Hamburger als eigenst~indiges Problem herauskristallisierte. Von da an 16ste es sich von seinem Ausgangspunkt und kniipfte an andere Teilgebiete der Mathematik an, so an die komplexe Funktionentheorie und an die Funktionalanalysis in den Arbeiten von Nevanlinna bzw. M. Riesz. Schliesslich wurde es vollkommen unabh~ngig vonder Theorie der KettenbrOche.Dans l'article l'auteur explique comment Stieltjes dans sa cr6ation de la th6orie analytique des fractions continues est arriv6 h concevoir le probl~me des moments. Elle d6montre par la suite comment ce m6me probl~me des moments est devenu important en soi dans les travaux de Hamburger. Depuis l'int6r6t pour ce probl~me s'est d6plac6 vers d'autres champs des math6matiques tels que la th6orie des fonctions complexes et l'analyse fonctionnelle dans les travaux de Nevanlinna and M. Riesz respectivement. Le probl/~me des moments est devenu finalement ind6pendent de la th6orie des fractions continues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.