Due to its extreme salinity and high Mg concentration the Dead Sea is characterized by a very low density of cells most of which are Archaea. We discovered several underwater fresh to brackish water springs in the Dead Sea harboring dense microbial communities. We provide the first characterization of these communities, discuss their possible origin, hydrochemical environment, energetic resources and the putative biogeochemical pathways they are mediating. Pyrosequencing of the 16S rRNA gene and community fingerprinting methods showed that the spring community originates from the Dead Sea sediments and not from the aquifer. Furthermore, it suggested that there is a dense Archaeal community in the shoreline pore water of the lake. Sequences of bacterial sulfate reducers, nitrifiers iron oxidizers and iron reducers were identified as well. Analysis of white and green biofilms suggested that sulfide oxidation through chemolitotrophy and phototrophy is highly significant. Hyperspectral analysis showed a tight association between abundant green sulfur bacteria and cyanobacteria in the green biofilms. Together, our findings show that the Dead Sea floor harbors diverse microbial communities, part of which is not known from other hypersaline environments. Analysis of the water’s chemistry shows evidence of microbial activity along the path and suggests that the springs supply nitrogen, phosphorus and organic matter to the microbial communities in the Dead Sea. The underwater springs are a newly recognized water source for the Dead Sea. Their input of microorganisms and nutrients needs to be considered in the assessment of possible impact of dilution events of the lake surface waters, such as those that will occur in the future due to the intended establishment of the Red Sea−Dead Sea water conduit.
Global change has triggered several transformations, such as alterations in climate, land productivity, water resources, and atmospheric chemistry, with far reaching impacts on ecosystem functions and services. Finding solutions to climate and land cover change-driven impacts on our terrestrial environment is one of the most important scientific challenges of the 21st century, with farreaching interlinkages to the socio-economy. The setup of the German Terrestrial Environmental Observatories (TERENO) Pre-Alpine Observatory was motivated by the fact that mountain areas, such as the pre-alpine region in southern Germany, have been exposed to more intense warming compared with the global average trend and to higher frequencies of extreme hydrological events, such as droughts and intense rainfall. Scientific research questions in the TERENO Pre-Alpine Observatory focus on improved process understanding and closing of combined energy, water, C, and N cycles at site to regional scales. The main long-term objectives of the TERENO Pre-Alpine Observatory include the characterization and quantification of climate change and land cover-management effects on terrestrial hydrology and biogeochemical processes at site and regional scales by joint measuring and modeling approaches. Here we present a detailed climatic and biogeophysical characterization of the TERENO Pre-Alpine Observatory and a summary of novel scientific findings from observations and projects. Finally, we reflect on future directions of climate impact research in this particularly vulnerable region of Germany.
ScaleX is a collaborative measurement campaign, collocated with a long-term environmental observatory of the German Terrestrial Environmental Observatories (TERENO) network in the mountainous terrain of the Bavarian Prealps, Germany. The aims of both TERENO and ScaleX include the measurement and modeling of land surface–atmosphere interactions of energy, water, and greenhouse gases. ScaleX is motivated by the recognition that long-term intensive observational research over years or decades must be based on well-proven, mostly automated measurement systems, concentrated in a small number of locations. In contrast, short-term intensive campaigns offer the opportunity to assess spatial distributions and gradients by concentrated instrument deployments, and by mobile sensors (ground and/or airborne) to obtain transects and three-dimensional patterns of atmospheric, surface, or soil variables and processes. Moreover, intensive campaigns are ideal proving grounds for innovative instruments, methods, and techniques to measure quantities that cannot (yet) be automated or deployed over long time periods. ScaleX is distinctive in its design, which combines the benefits of a long-term environmental-monitoring approach (TERENO) with the versatility and innovative power of a series of intensive campaigns, to bridge across a wide span of spatial and temporal scales. This contribution presents the concept and first data products of ScaleX-2015, which occurred in June–July 2015. The second installment of ScaleX took place in summer 2016 and periodic further ScaleX campaigns are planned throughout the lifetime of TERENO. This paper calls for collaboration in future ScaleX campaigns or to use our data in modelling studies. It is also an invitation to emulate the ScaleX concept at other long-term observatories.
The Dead Sea region has faced substantial environmental challenges in recent decades, including water resource scarcity, ~1m annual decreases in the water level, sinkhole development, ascending-brine freshwater pollution, and seismic disturbance risks. Natural processes are significantly affected by human interference as well as by climate change and tectonic developments over the long term. To get a deep understanding of processes and their interactions, innovative scientific approaches that integrate disciplinary research and education are required. The research project DESERVE (Helmholtz Virtual Institute Dead Sea Research Venue) addresses these challenges in an interdisciplinary approach that includes geophysics, hydrology, and meteorology. The project is implemented by a consortium of scientific institutions in neighboring countries of the Dead Sea (Israel, Jordan, Palestine Territories) and participating German Helmholtz Centres (KIT, GFZ, UFZ). A new monitoring network of meteorological, hydrological, and seismic/geodynamic stations has been established, and extensive field research and numerical simulations have been undertaken. For the first time, innovative measurement and modeling techniques have been applied to the extreme conditions of the Dead Sea and its surroundings. The preliminary results show the potential of these methods. First time ever performed eddy covariance measurements give insight into the governing factors of Dead Sea evaporation. High-resolution bathymetric investigations reveal a strong correlation between submarine springs and neo-tectonic patterns. Based on detailed studies of stratigraphy and borehole information, the extension of the subsurface drainage basin of the Dead Sea is now reliably estimated. Originality has been achieved in monitoring flash floods in an arid basin at its outlet and simultaneously in tributaries, supplemented by spatio-temporal rainfall data. Low-altitude, high resolution photogrammetry, allied to satellite image analysis and to geophysical surveys (e.g. shear-wave reflections) has enabled a more detailed characterization of sinkhole morphology and temporal development and the possible subsurface controls thereon. All the above listed efforts and scientific results take place with the interdisciplinary education of young scientists. They are invited to attend joint thematic workshops and winter schools as well as to participate in field experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.