Objective Because elevated copeptin, a marker of vasopressin, is linked to low water intake and high diabetes risk, we tested the effect of water supplementation on copeptin and fasting glucose. Design, Setting, and Participants Thirty-one healthy adults with high copeptin (>10.7 pmol · L −1 in men and >6.1 pmol·L −1 in women) identified in a population-based survey from 2013 to 2015 and with a current 24-hour urine osmolality of >600 mOsm · kg −1 were included. Intervention Addition of 1.5 L water daily on top of habitual fluid intake for 6 weeks. Main outcome measure Pre- and postintervention fasting plasma copeptin concentrations. Results Reported mean water intake increased from 0.43 to 1.35 L · d −1 ( P < 0.001), with no other observed changes in diet. Median (interquartile range) urine osmolality was reduced from 879 (705, 996) to 384 (319, 502) mOsm · kg −1 ( P < 0.001); urine volume increased from 1.06 (0.90, 1.20) to 2.27 (1.52, 2.67) L · d −1 ( P < 0.001); and baseline copeptin decreased from 12.9 (7.4, 21.9) pmol · L −1 to 7.8 (4.6;11.3) pmol · L −1 ( P < 0.001). Water supplementation reduced fasting plasma glucose from a mean (SD) of 5.94 (0.44) to 5.74 (0.51) ( P = 0.04). The water-associated reduction of both fasting copeptin and glucose concentration in plasma was most pronounced in participants in the top tertile of baseline copeptin. Conclusions Water supplementation in persons with habitually low water consumption and high copeptin levels is effective in lowering copeptin. It appears a safe and promising intervention with the potential of lowering fasting plasma glucose and thus reducing diabetes risk. Further investigations are warranted to support these findings.
Purpose An increasing body of evidence suggests that excreting a generous volume of diluted urine is associated with short- and long-term beneficial health effects, especially for kidney and metabolic function. However, water intake and hydration remain under-investigated and optimal hydration is poorly and inconsistently defined. This review tests the hypothesis that optimal chronic water intake positively impacts various aspects of health and proposes an evidence-based definition of optimal hydration. Methods Search strategy included PubMed and Google Scholar using relevant keywords for each health outcome, complemented by manual search of article reference lists and the expertise of relevant practitioners for each area studied. Results The available literature suggest the effects of increased water intake on health may be direct, due to increased urine flow or urine dilution, or indirect, mediated by a reduction in osmotically -stimulated vasopressin (AVP). Urine flow affects the formation of kidney stones and recurrence of urinary tract infection, while increased circulating AVP is implicated in metabolic disease, chronic kidney disease, and autosomal dominant polycystic kidney disease. Conclusion In order to ensure optimal hydration, it is proposed that optimal total water intake should approach 2.5 to 3.5 L day−1 to allow for the daily excretion of 2 to 3 L of dilute (< 500 mOsm kg−1) urine. Simple urinary markers of hydration such as urine color or void frequency may be used to monitor and adjust intake.
Background Epidemiological studies in humans show increased concentrations of copeptin, a surrogate marker of arginine vasopressin (AVP), to be associated with increased risk for type 2 diabetes. Objectives To examine the acute and independent effect of osmotically stimulated AVP, measured via the surrogate marker copeptin, on glucose regulation in healthy adults. Methods Sixty subjects (30 females) participated in this crossover design study. On 2 trial days, separated by ≥7 d (males) or 1 menstrual cycle (females), subjects were infused for 120 min with either 0.9% NaCl [isotonic (ISO)] or 3.0% NaCl [hypertonic (HYPER)]. Postinfusion, a 240-min oral-glucose-tolerance test (OGTT; 75 g) was administered. Results During HYPER, plasma osmolality and copeptin increased (P < 0.05) and remained elevated during the entire 6-h protocol, whereas renin-angiotensin-aldosterone system hormones were within the lower normal physiological range at the beginning of the protocol and declined following infusion. Fasting plasma glucose did not differ between trials (P > 0.05) at baseline and during the 120 min of infusion. During the OGTT the incremental AUC for glucose from postinfusion baseline (positive integer) was greater during HYPER (401.5 ± 190.5 mmol/L·min) compared with the ISO trial (354.0 ± 205.8 mmol/L·min; P < 0.05). The positive integer of the AUC for insulin during OGTT did not differ between trials (HYPER 55,850 ± 36,488 pmol/L·min compared with ISO 57,205 ± 31,119 pmol/L·min). Baseline values of serum glucagon were not different between the 2 trials; however, the AUC of glucagon during the OGTT was also significantly greater in HYPER (19,303 ± 3939 ng/L·min) compared with the ISO trial (18,600 ± 3755 ng/L·min; P < 0.05). Conclusions The present data indicate that acute osmotic stimulation of copeptin induced greater hyperglycemic responses during the oral glucose challenge, possibly due to greater glucagon concentrations. This study was registered at clinicaltrials.gov as NCT02761434.
Background The microbiome of the digestive tract exerts fundamental roles in host physiology. Extrinsic factors including lifestyle and diet are widely recognized as key drivers of gut and oral microbiome compositions. Although drinking water is among the food items consumed in the largest amount, little is known about its potential impact on the microbiome. Objectives We explored the associations of plain drinking water source and intake with gut and oral microbiota compositions in a population-based cohort. Methods Microbiota, health, lifestyle, and food intake data were extracted from the American Gut Project public database. Associations of drinking water source (bottled, tap, filtered, or well water) and intake with global microbiota composition were evaluated using linear and logistic models adjusted for anthropometric, diet, and lifestyle factors in 3413 and 3794 individuals, respectively (fecal samples; 56% female, median [IQR] age: 48 [36–59] y; median [IQR] BMI: 23.3 [20.9–26.3] kg/m2), and in 283 and 309 individuals, respectively (oral samples). Results Drinking water source ranked among the key contributing factors explaining the gut microbiota variation, accounting for 13% [Faith's phylogenetic diversity (Faith's PD)] and 47% (Bray–Curtis dissimilarity) of the age effect size. Drinking water source was associated with differences in gut microbiota signatures, as revealed by β diversity analyses (P < 0.05; Bray–Curtis dissimilarity, weighted UniFrac distance). Subjects drinking mostly well water had higher fecal α diversity (P < 0.05; Faith's PD, observed amplicon sequence variants), higher Dorea, and lower Bacteroides, Odoribacter, and Streptococcus than the other groups. Low water drinkers also exhibited gut microbiota differences compared with high water drinkers (P < 0.05; Bray–Curtis dissimilarity, unweighted UniFrac distance) and a higher abundance of Campylobacter. No associations were found between oral microbiota composition and drinking water consumption. Conclusions Our results indicate that drinking water may be an important factor in shaping the human gut microbiome and that integrating drinking water source and intake as covariates in future microbiome analyses is warranted.
The idea that water intake or hydration may play an intrinsic, independent role in modulating metabolic disease risk is relatively recent. Here, we outline the journey from early experimental works to more recent evidence linking water and hydration to metabolic health. It has been known for decades that individuals with existing metabolic dysfunction experience challenges to body water balance and have elevated arginine vasopressin (AVP), <underline>a key</underline> hormone regulating body fluid homeostasis. Later, intervention studies demonstrated that altering fluid balance in these individuals could worsen their condition, suggesting that hydration played a role in modulating glycemic control. More recently, observational and interventional studies in healthy individuals have implicated the hydration-vasopressin axis in the pathophysiology of metabolic diseases. Individuals with higher AVP (or its surrogate, copeptin) are at higher risk for developing type 2 diabetes and components of the metabolic syndrome, an association that remains even when controlling for known risk factors. Supporting preclinical work also suggests a causal role for AVP in metabolic dysfunction. It is known that individuals who habitually drink less fluids tend to have higher circulating AVP, which may be lowered by increasing water intake. In the short term, water supplementation in habitual low drinkers with high copeptin may reduce fasting glucose or glucagon, generating a proof of concept for the role of water supplementation in reducing incident metabolic disease. A large randomized trial is ongoing to determine whether water supplementation for 1 year in subjects with low water intake can meaningfully reduce fasting glucose, risk of new-onset diabetes, and other cardiometabolic risk factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.