• We built a kinematic source model of the 2020 Caribbean earthquake to analyze the spatiotemporal evolution of fault geometry and slip • A fault bend disturbed supershear rupture along the linear fault section and triggered subsequent rupture • Oceanic transform faults can have geometric complexity that controls rupture evolution
We built a kinematic source model of the 2020 Caribbean earthquake to analyze the spatiotemporal evolution of fault geometry and slip • A fault bend disturbed supershear rupture along the linear fault section and triggered subsequent rupture • Oceanic transform faults can have geometric complexity that controls rupture evolution
A moment magnitude 6.2 crustal earthquake occurred in northern Thailand on May 5, 2014, and its aftershocks exhibit several lineaments with conjugate pattern, involving geometric complexity in a multi-segmented fault system of the Phayao Fault Zone. However, a relationship between those geometric complexities and the rupture evolution of the 2014 Thailand earthquake is still elusive, which is critical to understand complex nature of the earthquake physics and to assess the hazard. Here, we elaborated the newly developed potency density tensor inversion method, used it to invert the globally observed teleseismic P waveforms, and estimated the spatiotemporal distribution of both the slip and the fault geometry. We found the complex rupture evolution consisting of two rupture episodes along a conjugated strike-slip fault system that comprises two distinct fault planes. The first episode originated at the hypocenter and the rupture propagated south along the north–northeast to south–southwest fault plane. The second episode was triggered at around 5 km north from the epicenter, and the rupture propagated along the east–northeast to west–southwest fault plane and terminated at the west end of the source area at 5 s hypocentral time. Our work demonstrates that our potency density tensor inversion can be applied to the smaller-scale magnitude-6 class earthquakes, and it resolves the complex rupture process controlled by the underlying geometric complexity in the fault system.
The earthquake with a moment magnitude 6.2 that occurred in northern Thailand on 5 May 2014 is the largest recorded in Thailand by modern seismographs; the source is located in the multi-segmented complex fault system of the Phayao fault zone in the northern Thai province of Chiang Rai. This geological setting is appropriate environment for investigating a compound rupture process associated with a geometrically complex fault system in a magnitude-6-class earthquake. To understand in detail the rupture process of the 2014 Thailand earthquake, we elaborate the flexible finite-fault inversion method, used it to invert the globally-observed teleseismic P waveforms, and resolved for the spatiotemporal distribution of both the slip and the fault geometry. The complex rupture process consists of two distinct coseismic slip episodes that evolved along two discontinuous fault planes; these planes coincide with the lineations of the aftershock distribution. The first episode originated at the hypocenter and the rupture propagated south along the north-northeast to south-southwest fault plane. The second episode was triggered at around 5 km north from the epicenter and the rupture propagated along the east-northeast to west-southwest fault plane and terminated at the west end of the source area at 4.5 s hypocentral time. The fault system derived from our finite-fault model suggests geometric complexities including bends. The derived spatiotemporal orientation of the principal stress axis shows different lineations within the two rupture areas and heterogeneity at their edges. This geological setting may have caused the perturbation of the rupture propagation and the triggering of the distinct rupture episodes. Our source model of the 2014 Thailand earthquake suggests that even in the case of small-scale earthquakes, the rupture evolution can be complex when the underlying fault geometry is multiplex.
We built a kinematic source model of the 2020 Caribbean earthquake to analyze the spatiotemporal evolution of fault geometry and slip • A fault bend disturbed supershear rupture along the linear fault section and triggered subsequent rupture • Oceanic transform faults can have geometric complexity that controls rupture evolution
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.