As robots venture into new application domains as autonomous vehicles on the road or as domestic helpers at home, they must recognize human intentions and behaviors in order to operate effectively. This paper investigates a new class of motion planning problems with uncertainty in human intention. We propose a method for constructing a practical model by assuming a finite set of unknown intentions. We first construct a motion model for each intention in the set and then combine these models together into a single Mixed Observability Markov Decision Process (MOMDP), which is a structured variant of the more common Partially Observable Markov Decision Process (POMDP). By leveraging the latest advances in POMDP/MOMDP approximation algorithms, we can construct and solve moderately complex models for interesting robotic tasks. Experiments in simulation and with an autonomous vehicle show that the proposed method outperforms common alternatives because of its ability in recognizing intentions and using the information effectively for decision making.
Legged robots have the ability to adapt their walking posture to navigate confined spaces due to their high degrees of freedom. However, this has not been exploited in most common multilegged platforms. This paper presents a deformable bounding box abstraction of the robot model, with accompanying mapping and planning strategies, that enable a legged robot to autonomously change its body shape to navigate confined spaces. The mapping is achieved using robot-centric multielevation maps generated with distance sensors carried by the robot. The path planning is based on the trajectory optimisation algorithm CHOMP which creates smooth trajectories while avoiding obstacles. The proposed method has been tested in simulation and implemented on the hexapod robot Weaver, which is 33 cm tall and 82 cm wide when walking normally. We demonstrate navigating under 25 cm overhanging obstacles, through 70 cm wide gaps and over 22 cm high obstacles in both artificial testing spaces and realistic environments, including a subterranean mining tunnel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.