Significant progress has been achieved for the development of novel anti-viral drugs in the recent years. Large numbers of these newly developed drugs belong to three groups of compounds, nucleoside analogues, thymidine kinase-dependent nucleotide analogues and specific viral enzyme inhibitors. It has been found that the natural products, like plant extract, plant-derived compounds (phytochemicals) and so on, as well as traditional medicines, like Ayurvedic, traditional Chinese medicine (TCM), Chakma medicines and so on, are the potential sources for potential and novel anti-viral drugs based on different in vitro and in vivo approaches. In this chapter some of these important approaches utilised in the drug discovery process of potential candidate(s) for anti-viral agents are being discussed. The key conclusion is that natural products are one of the most important sources of novel anti-viral agents.
A group of 221 male healthy volunteers of Indian Army were the subjects of the study. The baseline parameters of skeletal health were measured during their residency at an altitude of 3542 m. These subjects were then taken to an extreme altitude (EA, 5400-6700 m) where they stayed for about 4 months. The study parameters were repeated following their de-induction (DI) to 3542 m. On random selection, a subgroup was constituted from the above mentioned volunteers for detailed investigations on various bone turnover markers. Results of this study indicate a loss of body weight after DI from EA. The bone impairment was detected at the proximal phalanx, which is known to undergo early morpho-structural changes associated with bone resorption. The intact parathyroid hormone (i-PTH) levels showed a significant increase, while alkaline phosphatase (ALP) and bone specific alkaline phosphatase (BAP) activities declined significantly after DI from EA. This elevation in i-PTH might be required for maintenance of blood Ca level. 25 (OH) Vitamin D3 (25VitD) and calcitonin (CT) also showed a significant decline, which may suggest a negative impact on bone formation during sojourn at EA. The causes of deterioration of skeletal health at EA although are poorly understood but may be due to acute hypoxemia arising from extreme hypobaric hypoxia prevalent at extreme altitude.
Indian soldiers, while guarding the mountainous border areas, often carry loads in steep uphill gradients. This activity may predispose the risk of muscle injury. The present study aimed to examine the effects of an increasing load, speed and gradient during incremental uphill treadmill walking on different muscles. Twelve infantry soldiers walked on a treadmill at two speeds (2.5 and 4 km/h) with no load, and carrying 10.7, 17 and 21.4 kg loads at 0, 5, 10, 15, 20, 25% gradients. Electromyographic responses of erector spinae (>240%) and vastus medialis (>240%) were mostly affected, followed by soleus (>125%) and gastrocnemius medialis (>100%) at maximum speed, load and gradient combination compared to 0% gradient. Carrying 10.7 kg at 15% gradient and above was found to be highly strenuous and fatiguing with the risk of muscle injury. Uphill load carriage in slower speed is recommended for the maintenance of combat fitness of the individual at higher gradients. Practitioner Summary: The present article has evaluated the stress encountered by soldiers during load carriage at incremental uphill gradients while walking at different speeds by recording the muscular activities. Load carriage in steep uphill gradients is highly strenuous and may lead to muscle injury thus compromising the combat fitness.
BackgroundThe present study was designed to evaluate load carriage performance at extremely high altitudes with different loads and walking speeds in terms of physiological evaluation. The degree of maximum oxygen consumption changes at high altitudes was also examined.MethodsTwelve Indian Army soldiers were acclimatized at altitudes of 3,505 m and 4,300 m. They walked for 10 minutes on a motorized treadmill at 2.5 km/h and 3.5 km/h speeds during carrying no loads and three magnitudes of load (10.7 kg, 21.4kg, 30 kg) at both altitudes. Physiological parameters such as oxygen consumption, energy expenditure, heart rate, and ventilation were recorded for each breath using a gas analyzer. The rating of perceived exertion was also noted after each load carriage session. Maximal oxygen consumption (VO2max) was measured at sea level and the two high altitudes, and respective relative workloads (% of VO2max) were calculated from oxygen consumption. Repeated measure ANOVA was applied to reveal the significant effects of the independent variables.ResultsThe participants had significant reductions in VO2max with rising altitude. Marked increases in almost all physiological parameters were observed with increasing load, altitude, and speed. The soldiers expressed heavy perceived exertion levels with higher loads at 3.5 km/h at the two high altitudes.ConclusionsConsidering the physiological responses, expressions of perceived exertion and changes in relative work load at both of the high altitudes Indian soldiers are advised to walk slowly with adequate rest in between their schedules and to carry not more than 32% of their body weight.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.