Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. www.econstor.eu Terms of use: Documents in D I S C U S S I O N P A P E R S E R I E S ABSTRACT Unanticipated Effects of California's Paid Family Leave ProgramWe examine the effect of California Paid Family Leave (CPFL) on young women's (less than 42 years of age) labor force participation and unemployment. CPFL enables workers to take at most six weeks of paid leave over a 12 month period in order to bond with new born or adopted children, or to care for sick family members or ailing parents. The policy benefits women, especially young women, since they are more prone to take such a leave. However, the effect of the policy on labor market outcomes is less clear. We apply difference-indifference techniques to identify the effects of the CPFL legislation on young women's labor force participation and unemployment. We find that the labor force participation rate, the unemployment rate, and the duration of unemployment among young women rose in California compared to states that did not adopt paid family leave. The latter two findings regarding higher young women's unemployment and unemployment duration are unanticipated effects of the CPFL program. We utilize a unique placebo test to validate the robustness of these results.JEL Classification: H43, J13, J18, J48
Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. This paper examines how human capital based approaches explain the distribution of earnings. It assesses traditional, quasi-experimental, and new micro-based structural models, the latter of which gets at population heterogeneity by estimating individualspecific earnings function parameters. The paper finds one's ability to learn and one's ability to retain knowledge are most influential in explaining earnings variations. Marketable skills actually acquired in school depend on these two types of ability. However, schools may also implement ability enhancing interventions which can play a role in improving learning outcomes. Policy initiatives that improve these abilities would be a possible strategy to increase earnings and lower earnings disparity. JEL Classification:I3, J3, J7
Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. Terms of use: Documents in Estimating Labor Force Joiners and Leavers Using a Heterogeneity Augmented Two-Tier Stochastic Frontier jANuAry 2017Any opinions expressed in this paper are those of the author(s) and not those of IZA. Research published in this series may include views on policy, but IZA takes no institutional policy positions. The IZA research network is committed to the IZA Guiding Principles of Research Integrity. The IZA Institute of Labor Economics is an independent economic research institute that conducts research in labor economics and offers evidence-based policy advice on labor market issues. Supported by the Deutsche Post Foundation, IZA runs the world's largest network of economists, whose research aims to provide answers to the global labor market challenges of our time. Our key objective is to build bridges between academic research, policymakers and society. IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion. Citation of such a paper should account for its provisional character. A revised version may be available directly from the author. This leads to a complex nonlinear likelihood function requiring identification through a two-step estimation procedure, which we estimate using Current Population Survey (CPS) data. By transforming the basic equation linking labor force participation to the working age population, this paper devises a new method which can be used to identify labor market joiners and leavers. The method's advantage is its parsimonious data requirements, especially alleviating the need for survey based longitudinal data. JEL Classification:C23, C51, J21
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.