<span lang="EN-US">In this article, the alignment of multiple sequences is examined through swarm intelligence based an improved particle swarm optimization (PSO). A random heuristic technique for solving discrete optimization problems and realistic estimation was recently discovered in PSO. The PSO approach is a nature-inspired technique based on intelligence and swarm movement. Thus, each solution is encoded as “chromosomes” in the genetic algorithm (GA). Based on the optimization of the objective function, the fitness function is designed to maximize the suitable components of the sequence and reduce the unsuitable components of the sequence. The availability of a public benchmark data set such as the Bali base is seen as an assessment of the proposed system performance, with the potential for PSO to reveal problems in adapting to better performance. This proposed system is compared with few existing approaches such as deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) alignment (DIALIGN), PILEUP8, hidden Markov model training (HMMT), rubber band technique-genetic algorithm (RBT-GA) and ML-PIMA. In many cases, the experimental results are well implemented in the proposed system compared to other existing approaches.</span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.