Artificial Intelligence (AI) is playing a major role in medical education, diagnosis, and outbreak detection through Natural Language Processing (NLP), machine learning models and deep learning tools. However, in order to train AI to facilitate these medical fields, well-documented and accurate medical conversations are needed. The dataset presented covers a series of medical conversations in the format of Objective Structured Clinical Examinations (OSCE), with a focus on respiratory cases in audio format and corresponding text documents. These cases were simulated, recorded, transcribed, and manually corrected with the underlying aim of providing a comprehensive set of medical conversation data to the academic and industry community. Potential applications include speech recognition detection for speech-to-text errors, training NLP models to extract symptoms, detecting diseases, or for educational purposes, including training an avatar to converse with healthcare professional students as a standardized patient during clinical examinations. The application opportunities for the presented dataset are vast, given that this calibre of data is difficult to access and costly to develop.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.