We present here the design of the Mechanical Ventilator Milano (MVM), a novel mechanical ventilator designed for mass scale production in response to the COVID-19 pandemics, to compensate for the dramatic shortage of such ventilators in many countries. This ventilator is an electro-mechanical equivalent of the old, reliable Manley Ventilator. Our design is optimized to permit large sale production in short time and at a limited cost, relying on off-the-shelf components, readily available worldwide from hardware suppliers. Operation of the MVM requires only a source of compressed oxygen (or compressed medical air) and electrical power. The MVM control and monitoring unit can be connected and networked via WiFi so that no additional electrical connections are necessary other than the connection to the electrical power.At this stage the MVM is not a certified medical device. Construction of the first prototypes is starting with a team of engineers, scientists and computing experts. The purpose of this paper is to disseminate the conceptual design of the MVM broadly and to solicit feedback from the scientific and medical community to speed the process of review, improvement and possible implementation.
Human-robot cooperation is increasingly demanded in industrial applications. Many tasks require the robot to enhance the capabilities of humans, allowing them to execute onerous tasks or improving their functionalities. Besides wearable robotics, standard industrial manipulators are common solutions adopted to empower humans. With this aim, the paper describes a fuzzy-impedance control approach for assisting human operator in onerous industrial applications. The developed method allows to set in realtime the set-point of impedance controller based on human intentions. Two fuzzy membership functions have been defined, respectively, on the basis of interaction force derivative and robot velocity signals, allowing to calculate the needed assistance level for the human operator. The effectiveness of proposed approach is verified on KUKA iiwa 14 R820 in an experimental procedure where human subjects evaluate the robot's performance in a collaborative lifting task.
The patient population needing physical rehabilitation in the upper extremity is constantly increasing. Robotic devices have the potential to address this problem, however most of the rehabilitation robots are technically advanced and mainly designed for clinical use. This paper presents the development of an affordable device for upper-limb neurorehabilitation designed for home use. The device is based on a 2-DOF five-bar parallel kinematic mechanism. The prototype has been designed so that it can be bound on one side of a table with a clamp. A kinematic optimization was performed on the length of the links of the manipulator in order to provide the optimum kinematic behaviour within the desired workspace. The mechanical structure was developed, and a 3D-printed prototype was assembled. The prototype embeds two single-point load cells to measure the force exchanged with the patient. Rehabilitation-specific control algorithms are described and tested. Finally, an experimental procedure is performed in order to validate the accuracy of the position measurements. The assessment confirms an acceptable level of performance with respect to the requirements of the application under analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.