Aims: Lactic acid bacteria (LAB) were isolated and sequenced from the faeces of healthy dogs. Five of these strains were selected and further characterized to clarify the potential of these strains as probiotics for canine. Methods and Results: LAB were found in 67% (14/21) of the canine faeces samples when plated on Lactobacilli Selective Media without acetic acid. Out of 13 species identified with partial 16S rRNA gene sequencing, Lactobacillus fermentum LAB8, L. mucosae LAB12, L. rhamnosus LAB11, L. salivarius LAB9 and Weissella confusa LAB10 were selected as candidate probiotic strains based on their frequency, quantity in faeces, growth density, acid tolerance and antimicrobial activity. The minimal inhibitory concentration values of these isolates were determined for 14 antibiotics. L. salivarius LAB9, W. confusa LAB10 and L. mucosae LAB12 were viable in pH 2 for 4 h (mLBS), indicating tolerance to acidity and thus the potential to survive in gastrointestinal tract of the canine. The LAB8‐LAB12 strains showed antimicrobial activity against Micrococcus luteus A1 NCIMB86166. Conclusions: Thirteen different LAB species were found from the faecal microbiota of the healthy canines. Five acid tolerant and antimicrobially active LAB strains with the capacity to grow to high densities both aerobically and anaerobically were chosen to serve as candidate probiotics. Significance and Impact of the Study: The selected LAB strains are among the first host‐specific LAB with antimicrobial activity isolated from canines that could serve as potential probiotics for canine use.
Five potentially probiotic canine fecal lactic acid bacterium (LAB) strains, Lactobacillus fermentum LAB8, Lactobacillus salivarius LAB9, Weissella confusa LAB10, Lactobacillus rhamnosus LAB11, and Lactobacillus mucosae LAB12, were fed to five permanently fistulated beagles for 7 days. The survival of the strains and their potential effects on the indigenous intestinal LAB microbiota were monitored for 17 days. Denaturing gradient gel electrophoresis (DGGE) demonstrated that the five fed LAB strains survived in the upper gastrointestinal tract and modified the dominant preexisting indigenous jejunal LAB microbiota of the dogs. When the LAB supplementation was ceased, DGGE analysis of jejunal chyme showed that all the fed LAB strains were undetectable after 7 days. However, the diversity of the intestinal indigenous microbiota of the dogs, as characterized from jejunal chyme plated on Lactobacillus selective medium without acetic acid, was reduced and did not return to the original level during the study period. In all but one dog, an indigenous Lactobacillus acidophilus strain emerged as the dominant LAB strain. In conclusion, strains LAB8 to LAB12 have potential as probiotic strains for dogs as they survive in and dominate the jejunal LAB microbiota during feeding and have the ability to modify the intestinal microbiota.
Lactobacilli were isolated from jejunal chyme from five fistulated beagles. Cultivable lactobacilli varied from 10 4 to 10 8 CFU/ml. Seventy-four isolates were identified by partial 16S rRNA gene sequencing and differentiated by repetitive element PCR (Rep-PCR), Lactobacillus acidophilus was dominant, and nearly 80% of 54 isolates shared the same DNA fingerprint pattern.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.