Catalytic promiscuity is a useful, but accidental, enzyme property, so finding catalytically promiscuous enzymes in nature is inefficient. Some ancestral enzymes were branch points in the evolution of new enzymes and are hypothesized to have been promiscuous. To test the hypothesis that ancestral enzymes were more promiscuous than their modern descendants, we reconstructed ancestral enzymes at four branch points in the divergence hydroxynitrile lyases (HNL’s) from esterases ~100 million years ago. Both enzyme types are α/β-hydrolase-fold enzymes and have the same catalytic triad, but differ in reaction type and mechanism. Esterases catalyze hydrolysis via an acyl enzyme intermediate, while lyases catalyze an elimination without an intermediate. Screening ancestral enzymes and their modern descendants with six esterase substrates and six lyase substrates found higher catalytic promiscuity among the ancestral enzymes (P <0.01). Ancestral esterases were more likely to catalyze a lyase reaction than modern esterases and the ancestral HNL was more likely to catalyze ester hydrolysis than modern HNL’s. One ancestral enzyme (HNL1) along the path from esterase to hydroxynitrile lyases was especially promiscuous and catalyzed both hydrolysis and lyase reactions with many substrates. A broader screen tested mechanistically related reactions that were not selected for by evolution: decarboxylation, Michael addition, γ-lactam hydrolysis and 1,5-diketone hydrolysis. The ancestral enzymes were more promiscuous than their modern descendants (P = 0.04). Thus, these reconstructed ancestral enzyme are catalytically promiscuous, but HNL1 is especially so.
A pH-based high-throughput assay method has been developed for the rapid and reliable measurement of transketolase (TK) activity. The method is based on the decarboxylation of lithium hydroxypyruvate (HPA) as a hydroxyacetyl donor with an aldehyde acceptor, using phenol red as the pH indicator. Upon release of carbon dioxide from HPA, the pH increase in the reaction mixture can be determined photometrically by the color change of the pH indicator. At low buffer concentration (2 mM triethanolamine, pH 7.5), the method is highly sensitive and allows continuous monitoring, for quantitative determination of the kinetic parameters. By using this method, the substrate specificities of the TK enzymes from Escherichia coli and Saccharomyces cerevisiae, as well as two active-site-modified variants of the E. coli TK (D469E, H26Y) were evaluated against a panel of substrate analogues; specific activities and kinetic constants could be rapidly determined. Substrate quality indicated by assay determination was substantiated with novel TK applications by using achiral 3-hydroxypropanal and 4-hydroxybutanal for preparative synthesis of chiral deoxyketose-type products. Determination of ee for the latter could be performed by chiral GC analysis, with an unambiguous correlation of the absolute configuration from rotation data. This pH-based assay method is broadly applicable and allows rapid, sensitive, and reliable screening of the substrate tolerance of known TK enzymes and variants obtained from directed evolution.
Directed evolution of the thermostable transketolase from Geobacillus stearothermophilus based on a pH-based colorimetric screening of smart libraries yielded several mutants with up to 16-fold higher activity for aliphatic aldehydes and high enantioselectivity (>95% ee) in the asymmetric carboligation step.
Here we have characterized the first transketolase (TK) from a thermophilic microorganism, Geobacillus stearothermophilus, which was expressed from a synthetic gene in Escherichia coli. The G. stearothermophilus TK (mTK gst ) retained 100% activity for one week at 50 8C and for 3 days at 65 8C, and has an optimum temperature range around 60-70 8C, which will be useful for preparative applications and for future biocatalyst development. The thermostability of the mTK gst allowed us to carry out an easy, one-step purification by heat shock treatment of crude cell extracts at 65 8C for 45 min, directly yielding 132 mg of pure mTK gst from 1 L of culture. The reaction rate of mTK gst with glycolaldehyde was 14 times higher at 70 8C than at 20 8C, and 4 times higher at 50 8C when compared to E. coli TK under identical conditions. When tested at 50 8C with other aldehydes as acceptors, mTK gst activity was approximately 3 times higher than those obtained at 20 8C. Applications of this new TK in biocatalysis were performed with hydroxypyruvate as donor and three different aldehydes as acceptors -glycolaldehyde, d-glyceraldehyde and butyraldehyde -from which the corresponding products l-erythrulose 1, dxylulose 2 and 1,3-dihydroxyhexan-2-one 3 were obtained, respectively. The optical rotations for products 1 and 2 indicate that the stereospecificity of mTK gst is identical to that of other TK sources, leading to a (3S) configuration. With the non-hydroxylated substrate, butanal, the ee value was 85% (3S), showing higher enantioselectivity than the E. coli TK (75% ee, 3S). Processes at elevated temperatures could offer opportunities to extend the applications of TK biocatalysis, by favoring hydrophobic aldehyde acceptor substrate solubility and tolerance towards non-conventional media.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.