We introduce the first passage set (FPS) of constant level −a of the two-dimensional continuum Gaussian free field (GFF) on finitely connected domains. Informally, it is the set of points in the domain that can be connected to the boundary by a path on which the GFF does not go below −a. It is, thus, the two-dimensional analogue of the first hitting time of −a by a one-dimensional Brownian motion. We provide an axiomatic characterization of the FPS, a continuum construction using level lines, and study its properties: it is a fractal set of zero Lebesgue measure and Minkowski dimension 2 that is coupled with the GFF Φ as a local set A so that Φ + a restricted to A is a positive measure. One of the highlights of this paper is identifying this measure as a Minkowski content measure in the non-integer gauge r → | log(r)| 1/2 r 2 , by using Gaussian multiplicative chaos theory.2010 Mathematics Subject Classification. 60G15; 60G60; 60J65; 60J67; 81T40.
In a previous article, we introduced the first passage set (FPS) of constant level −a of the two-dimensional continuum Gaussian free field (GFF) on finitely connected domains. Informally, it is the set of points in the domain that can be connected to the boundary by a path along which the GFF is greater than or equal to −a. This description can be taken as a definition of the FPS for the metric graph GFF, and it justifies the analogy with the first hitting time of −a by a onedimensional Brownian motion. In the current article, we prove that the metric graph FPS converges towards the continuum FPS in the Hausdorff metric. This allows us to show that the FPS of the continuum GFF can be represented as a union of clusters of Brownian excursions and Brownian loops, and to prove that Brownian loop soup clusters admit a non-trivial Minkowski content in the gauge r → | log r| 1/2 r 2 . We also show that certain natural interfaces of the metric graph GFF converge to SLE4 processes.2010 Mathematics Subject Classification. 60G15; 60G60; 60J65; 60J67; 81T40.
Lupu introduced a coupling between a random walk loop-soup and a Gaussian free field, where the sign of the field is constant on each cluster of loops. This coupling is a signed version of isomorphism theorems relating the square of the GFF to the occupation field of Markovian trajectories. His construction starts with a loop-soup, and by adding additional randomness samples a GFF out of it. In this article we provide the inverse construction: starting from a signed free field and using a self-interacting random walk related to this field, we construct a random walk loop-soup. Our construction relies on the previous work by Sabot and Tarrès, which inverts the coupling from the square of the GFF rather than the signed GFF itself. As a consequence, we also deduce an inversion of the coupling between the random current and the FK-Ising random cluster models introduced by Lupu and Werner.
We consider the random walk loop-soup of sub-critical intensity parameter on the discrete half-plane H := Z × N. We look at the clusters of discrete loops and show that the scaling limit of the outer boundaries of outermost clusters is a CLEκ Conformal loop ensemble.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.