This work aims to evaluate the effect of ferulic acid-grafted chitosan (FA-g-CS) on the interaction between anthocyanin (ANC) and sGLT1/GLUT2 and their functions in ANC transmembrane transport using Caco-2 cells. The transmembrane transport experiments of ANC showed its low transport efficiency (Papp < 10−6 cm/s), whereas the phenomenon of a significantly rise in anthocyanins transport efficiency was observed with the incubation of FA-g-CS (p < 0.05). In order to investigate the mechanism of FA-g-CS improving ANC transmembrane transport, Caco-2 cells were transfected with small interfering RNA (siRNA) specific for transporters sGLT1 and GLUT2, and incubated with ANC, FA-g-CS, or their combination. Subsequently, Western blot analyses and immunofluorescence staining were carried out to monitor the intracellular sGLT1 and GLUT2 levels. These siRNA-transfected cells, incubated with compounds, indicate that sGLT1 and GLUT2 participated in the ANC transmembrane transport and that FA-g-CS, ANC, or their combination enhance sGLT1/GLUT2 expression. In particular, Caco-2 cells incubated with both FA-g-CS and ANC show significantly increased sGLT1 or GLUT2 expression (>80%) compared with exclusively using FA-g-CS or ANC (<60%). Molecular docking results demonstrate that there is a good binding between FA-g-CS/ANC and sGLT1 or GLUT2. These results highlight that FA-g-CS promotes the transmembrane transport of ANC by influencing the interaction between ANC and sGLT1/GLUT2; the interaction between FA-g-CS and ANC could be another key factor that improves the bioavailability of ANC.
To improve wine safety and quality, the pulsed electric field (PEF) offers a rapid, nonthermal, and highly effective technology for inactivating key wine spoilage yeasts while maintaining the organoleptic qualities. PEF can be readily integrated into existing industrial processes and offers relatively low energy consumption and high-throughput production that could benefit winemakers worldwide. In this review, studies of PEF treatment combined with other techniques for enhancing wine quality and safety, the processing principles of PEF, equipment parameters, and the sterilization mechanism are summarized. In addition, the main limitations and advantages of PEF technology and the prospects of PEF technology in combination with other technologies for sulfur dioxide (SO 2 ) substitution in winemaking in the future are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.