Toll-like receptors (TLRs) play key roles in detecting pathogens and initiating inflammatory responses that, subsequently, prime specific adaptive responses. Several mechanisms control TLR activity to avoid excessive inflammation and consequent immunopathology, including the anti-inflammatory cytokine IL-10. Recently, several TLR-responsive microRNAs (miRs) have also been proposed as potential regulators of this signaling pathway, but their functional role during the inflammatory response still is incompletely understood. In this study, we report that, after LPS engagement, monocytes up-regulate miR-146b via an IL-10–mediated STAT3-dependent loop. We show evidence that miR-146b modulates the TLR4 signaling pathway by direct targeting of multiple elements, including the LPS receptor TLR4 and the key adaptor/signaling proteins myeloid differentiation primary response (MyD88), interleukin-1 receptor-associated kinase 1 (IRAK-1), and TNF receptor-associated factor 6 (TRAF6). Furthermore, we demonstrate that the enforced expression of miR-146b in human monocytes led to a significant reduction in the LPS-dependent production of several proinflammatory cytokines and chemokines, including IL-6, TNF-α, IL-8, CCL3, CCL2, CCL7, and CXCL10. Our results thus identify miR-146b as an IL-10–responsive miR with an anti-inflammatory activity based on multiple targeting of components of the TLR4 pathway in monocytes and candidate miR-146b as a molecular effector of the IL-10 anti-inflammatory activity.
Beyond the physiology of reproduction, estrogen controls the homeostasis of several tissues. Although macrophages play a key role in tissue remodeling, the interplay with estrogen is still ill defined. Using a transcriptomic approach we first obtained a comprehensive list of genes that are differentially expressed in peritoneal macrophages in response to physiological levels of 17β-estradiol (E2) injected in intact female mice. Our data also showed the dynamic nature of the macrophage response to E2 and pointed to specific biological programs induced by the hormone, with cell proliferation, immune response and wound healing being the most prominent functional categories. Indeed, the exogenous administration of E2 and, more importantly, the endogenous hormonal surge proved to support macrophage proliferation in vivo, as shown by cell cycle gene expression, BrdU incorporation and cell number. Furthermore, E2 promoted an anti-inflammatory and pro-resolving macrophage phenotype, which converged on the induction of genes related to macrophage alternative activation and on IL-10 expression in vivo. Hormone action was maintained in an experimental model of peritoneal inflammation based on zymosan injection. These findings highlight a direct effect of estrogen on macrophage expansion and phenotypic adaptation in homeostatic conditions and suggest a role for this interplay in inflammatory pathologies.
An appropriate immune response requires a tight balance between pro- and anti-inflammatory mechanisms. IL-10 is induced at late time-points during acute inflammatory conditions triggered by TLR-dependent recognition of infectious agents and is involved in setting this balance, operating as a negative regulator of the TLR-dependent signaling pathway. We identified miR-125a~99b~let-7e as an evolutionary conserved microRNA cluster late-induced in human monocytes exposed to the TLR4 agonist LPS as an effect of this IL-10-dependent regulatory loop. We demonstrated that microRNAs generated by this cluster perform a pervasive regulation of the TLR signaling pathway by direct targeting receptors (TLR4, CD14), signaling molecules (IRAK1), and effector cytokines (TNFα, IL-6, CCL3, CCL7, CXCL8). Modulation of miR-125a~99b~let-7e cluster influenced the production of proinflammatory cytokines in response to LPS and the IL-10-mediated tolerance to LPS, thus identifying this gene as a previously unrecognized major regulatory element of the inflammatory response and endotoxin tolerance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.