This paper describes a novel emergency communication network architecture implemented within the FP7 EU project E-SPONDER [1]. It is characterized by the deployment of heterogeneous wireless systems and also by its holistic approach achieving reliability, high performance, reconfigurability and standalone operation. It is a complete suite of real-time communication technologies built to support the first responders [1] with information services during disaster events. This work investigates the system architecture in an aircraft landing incident and describes a field test carried on at Schiphol airport in Amsterdam. More specifically, a scalable and adaptive telecommunication architecture that ensures voice, video and data between first responders and command centers at all times, even under extreme conditions, is presented. The structure and functionalities of the VoIP subsystem that operates above the proposed heterogeneous E-SPONDER network architecture is described, with a detailed scenario analysis. Finally, the paper presents how the recommended solutions are integrated into an implementable platform.
A diverse range of faults and errors can occur within a wireless sensor network (WSN), and it is difficult to predict and classify them, especially post-deployment within the environment. Current monitoring and debugging techniques prove deficient for systems which contain bugs characteristic of both distributed and embedded systems. The challenge that faces researchers is how to comprehensively address network, node and data level anomalies within WSNs through the creation, collection and aggregation of local state information while minimizing additional network traffic and node energy expenditure. This paper introduces Intellectus which seeks to develop sensor motes that are both self and environment aware. The sensor node relies on local information in order to monitor itself and that of its neighborhood, by adding a learning approach based upon perceived events and their associated frequency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.