Rasmussen encephalitis (RE) is a rare but severe immune-mediated brain disorder leading to unilateral hemispheric atrophy, associated progressive neurological dysfunction and intractable seizures. Recent data on the pathogenesis of the disease, its clinical and paraclinical presentation, and therapeutic approaches are summarized. Based on these data, we propose formal diagnostic criteria and a therapeutic pathway for the management of RE patients.
Summary: Inflammatory reactions occur in the brain in various CNS diseases, including autoimmune, neurodegenerative, and epileptic disorders. Proinflammatory and antiinflammatory cytokines and related molecules have been described in CNS and plasma, in experimental models of seizures and in clinical cases of epilepsy. Inflammation involves both the innate and the adaptive immune systems and shares molecules and pathways also activated by systemic infection. Experimental studies in rodents show that inflammatory reactions in the brain can enhance neuronal excitability, impair cell survival, and increase the permeability of the blood–brain barrier to blood‐borne molecules and cells. Moreover, some antiinflammatory treatments reduce seizures in experimental models and, in some instances, in clinical cases of epilepsy. However, inflammatory reactions in brain also can be beneficial, depending on the tissue microenvironment, the inflammatory mediators produced in injured tissue, the functional status of the target cells, and the length of time the tissue is exposed to inflammation. We provide an overview of the current knowledge in this field and attempt to bridge experimental and clinical evidence to discuss critically the possibility that inflammation may be a common factor contributing, or predisposing, to the occurrence of seizures and cell death, in various forms of epilepsy of different etiologies. The elucidation of this aspect may open new perspectives for the pharmacologic treatment of seizures.
Summary:Purpose: It is generally accepted that blood-brain barrier (BBB) failure occurs as a result of CNS diseases, including epilepsy. However, evidences also suggest that BBB failure may be an etiological factor contributing to the development of seizures.Methods: We monitored the onset of seizures in patients undergoing osmotic disruption of BBB (BBBD) followed by intraarterial chemotherapy (IAC) to treat primary brain lymphomas. Procedures were performed under barbiturate anesthesia. The effect of osmotic BBBD was also evaluated in naive pigs.Results: Focal motor seizures occurred immediately after BBBD in 25% of procedures and originated contralateral to the hemisphere of BBBD. No seizures were observed when BBB was not breached and only IAC was administered. The only predictors of seizures were positive indices of BBBD, namely elevation of serum S100β levels and computed tomography (CT) scans. In a porcine model of BBBD, identical procedures generated an identical result, and sudden behavioral and electrographic (EEG) seizures correlated with successful BBB disruption. The contribution of tumor or chemotherapy to acute seizures was therefore excluded.Conclusion: This is the first study to correlate extent of acute BBB openings and development of seizures in humans and in a large animal model of BBB opening. Acute vascular failure is sufficient to cause seizures in the absence of CNS pathologies or chemotherapy.
Status epilepticus (SE) is one of the most serious manifestations of epilepsy. Systemic inflammation and damage of blood-brain barrier (BBB) are etiologic cofactors in the pathogenesis of pilocarpine SE while acute osmotic disruption of the BBB is sufficient to elicit seizures. Whether an inflammatory-vascular-BBB mechanism could apply to the lithium–pilocarpine model is unknown. LiCl facilitated seizures induced by low-dose pilocarpine by activation of circulating T-lymphocytes and mononuclear cells. Serum IL-1β levels increased and BBB damage occurred concurrently to increased theta EEG activity. These events occurred prior to SE induced by cholinergic exposure. SE was elicited by lithium and pilocarpine irrespective of their sequence of administration supporting a common pathogenetic mechanism. Since IL-1β is an etiologic trigger for BBB breakdown and its serum elevation occurs before onset of SE early after LiCl and pilocarpine injections, we tested the hypothesis that intravenous administration of IL-1 receptor antagonists (IL-1ra) may prevent pilocarpine-induced seizures. Animals pre-treated with IL-1ra exhibited significant reduction of SE onset and of BBB damage. Our data support the concept of targeting systemic inflammation and BBB for the prevention of status epilepticus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.