BackgroundThis study describes immunological responses, diagnostic features, follow up and treatment outcomes from seventeen dogs with papular dermatitis due to Leishmania infection diagnosed by cytology or real time-PCR.MethodsSpecific Leishmania humoral and cellular immune responses were evaluated by means of an immunofluorescence antibody test in all cases and a delayed-type hypersensitivity (DTH) reaction to leishmanin in eight cases. The extent of infection was studied in several tissues including blood, lymph node, conjunctival and oral swabs, by means of PCR, at the time of diagnosis and during follow-up. Culture was performed on nine dogs from cutaneous lesions and lymph node aspirates and molecular typing was carried out on isolates based on ITS-1, ITS-2 and Haspb gene sequencing analysis.ResultsCytological and molecular results from fine needle aspirates of papules were diagnostic in 8 out of 13 (61.5%) cases and in 14 out of 15 dogs (93.3%), respectively. In all dogs, specific anti-Leishmania antibody levels were low or absent. Blood and lymph node PCRs and lymph node culture were negative in all dogs. Three out of the nine dogs (33%) were positive by culture from cutaneous lesions. The three isolates were identified as ITS type A, however, polymorphism was observed in the Haspb gene (PCR products of 626 bp, 962 bp and 371 bp). DTH response was positive in all tested dogs at the time of diagnosis. The majority of dogs were successfully treated with only N-methylglucamine antimoniate, after which cutaneous lesions disappeared or were reduced to depigmented, flattened scars. All dogs remained seronegative and the majority of dogs were negative by PCR in several tissues during follow-up.ConclusionsThis study points out that papular dermatitis due to L. infantum is probably an underestimated benign cutaneous problem, associated with a parasite specific cell mediated immunity and a poor humoral immune response. Papular dermatitis is seen in young dogs, and appears to be a mild disease with restricted parasite dissemination and a good prognosis. PCR can be used as a non-invasive method to routinely evaluate papules if Leishmania infection is suspected in cases in which parasites are not visualized by cytology.
The aim of this study is to improve the cultivation of Leishmania promastigotes without the use of common, semisolid culture media such as Evans' modified Tobie's medium (EMTM), liquid RPMI 1640, and Peptone-yeast extract medium (P-Y). Although EMTM medium permits the growth of a high number of parasites, it is technically difficult to prepare as it requires the use of fresh rabbit blood from animals bred on farms, while RPMI 1640 and P-Y show lower growth rates than the EMTM. There is, therefore, a need to develop new blood-free and time-saving culture systems. The aim of this paper is to propose new modified microbiological media, named RPMI-PY and Tobie-PY, to isolate Leishmania and cultivate parasites for research and diagnostic purposes. This study compares classic culture media to the new media, RPMI-PY and Tobie-PY, and demonstrates that the new media have superior performance in terms of time and parasitic load. The growth rate of the parasite was significantly higher at 24, 48, and 72 hr cultivation, based on counts using Bürker's chambers, when compared to classic media. This study was carried out at the National References Centre for Leishmaniasis (C.Re.Na.L.) where the isolation procedures are conducted daily from a number of different biological matrices.
Background Leishmaniasis is one of the most important vector-borne diseases and it represents a serious world health problem affecting millions of people. High levels of Leishmania infections, affecting both humans and animals, are recognized among Italian regions. Among these, Sicily has one of the highest prevalence of Leishmania infection. Methodology/Principal Findings Seventy-eight Leishmania strains isolated from human and animal samples across Sicily, were analyzed for the polymorphic k26-gene and genotypes were assigned according to the size of the PCR products. A multilocus microsatellite typing (MLMT) approach based on the analysis of 11 independent loci was used to investigate populations structure and genetic diversity of the isolated strains. Six L. infantum reference strains were included in the analysis for comparison. Bayesian clustering analysis of microsatellite data showed that all the isolated strains clustered in two genetically distinct populations, corresponding to human and canine isolates respectively. A further subdivision was observed between the two main groups, giving a good correlation between human strains and their geographic origin, conversely canine population showed a great genetic variability diffused in the territory. Conclusions/Significance Among the 78 Leishmania isolates, K26 analysis detected 71 samples (91%) as MON-1 zymodeme, confirming it as the predominant strain in Mediterranean area and 7 human samples (9%) as non-MON-1. MLMT gives important insights into the epidemiology of leishmaniases and allows characterization of different strains to a higher resolution than possible with zymodeme typing. Two main populations presented a strong correlation respect to the different hosts, exhibiting a co-circulation of two distinct populations of L. infantum. The PLOS NEGLECTED TROPICAL DISEASES
Different approaches are being developed to improve the differentiation of Leishmania genus using biochemical and molecular methods. In this study, 11 independent polymorphic microsatellites were used for the typing of strains of L. infantum isolated in Sicily. Polymerase chain reaction was employed to amplify the microsatellites contained in 12 DNA regions selected from among more investigated loci. A total of 51 isolates of L. infantum from dogs were tested by using the same locus panel. The products were successively analysed using an automatic sequence detector (ABI PRISM 3130 AB), to discover relevant microsatellite polymorphisms. It was possible to discriminate between MON-1 and non-MON-1 groups. Moreover, the method permitted to distinguish various genotypes of L. infantum isolates within each zymodema. Model- and distance-based analyses of the data set showed comparable results. The frequency of heterozygosity in the alleles analysed varied extremely between the different groups of isolates. As the method exhibits a high level of discrimination, it is suitable for characterization of closely related strains in epidemiological studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.