SERPINB3 is a cysteine-proteases inhibitor up-regulated in a significant number of cirrhotic patients carrying hepatocellular carcinoma (HCC) and recently proposed as a prognostic marker for HCC early recurrence. SERPINB3 has been reported to stimulate proliferation, inhibit apoptosis and, similar to what reported for hypoxia, to trigger epithelial-to-mesenchymal transition (EMT) and increased invasiveness in liver cancer cells. This study has investigated whether SERPINB3 expression is regulated by hypoxia-related mechanisms in liver cancer cells.Exposure of HepG2 and Huh7 cells to hypoxia up-regulated SERPINB3 transcription, protein synthesis and release in the extracellular medium. Hypoxia-dependent SERPINB3 up-regulation was selective (no change detected for SERPINB4) and operated through hypoxia inducible factor (HIF)-2α (not HIF-1α) binding to SERPINB3 promoter, as confirmed by chromatin immuno-precipitation assay and silencing experiments employing specific siRNAs. HIF-2α-mediated SERPINB3 up-regulation under hypoxic conditions required intracellular generation of ROS. Immuno-histochemistry (IHC) and transcript analysis, performed in human HCC specimens, revealed co-localization of the two proteins in liver cancer cells and the existence of a positive correlation between HIF-2α and SERPINB3 transcript levels, respectively.Hypoxia, through HIF-2α-dependent and redox-sensitive mechanisms, up-regulates the transcription, synthesis and release of SERPINB3, a molecule with a high oncogenic potential.
Imiquimod (IMQ) is an immune response modifier clinically used for the treatment of various topical diseases. However, its poor aqueous solubility and skin penetration capability make the topical delivery of IMQ a challenging task. This work aims at developing a nanomedicine-based topical formulation, carrying IMQ to control the scarring process for the treatment of aberrant wounds. For this purpose, IMQ was loaded in β-cyclodextrin-based nanosponges and dispersed in a hydrogel suitable for dermal application. The formulation was characterized in vitro and compared with IMQ inclusion complexes, with (2-hydroxy)propyl β-cyclodextrin(HPβCD) and carboxymethyl β-cyclodextrin (CMβCD) showing enhanced penetration properties. The hydrogel containing IMQ-loaded nanosponges could act as a drug reservoir and guarantee the sustained release of IMQ through the skin. A greater inhibitory effect on fibroblast proliferation was observed for IMQ loaded in nanosponges compared to the other formulations.
Cat scratch disease (CSD) is an infectious disease caused by Bartonella henselae, usually characterized by self-limiting regional lymphadenopathy and fever. Given the low clinical diagnostic sensitivity and specificity of conventional anti-B. henselae indirect immunofluorescence assays (IFAs), real-time polymerase chain reaction (PCR)-based detection of B. henselae is now being proposed as a more sensitive tool to diagnose CSD. Thus, here we have assessed the efficacy of real-time PCR in detecting B. henselae in different specimens from patients with suspected CSD and compared it to that of IFA. From March 2011 to May 2016, at the Microbiology and Virology Unit, Azienda Ospedaliera Universitaria Città della Salute e della Scienza di Torino, Turin, Italy, 115 clinical specimens (56 aspirated pus, 39 fresh lymph node biopsies, and 20 whole blood samples) and 99 sera from 115 patients with suspected CSD (62 females and 53 males between the ages of 3 months and 68 years) were analyzed by both real-time PCR, used in a qualitative way, and IFA (IgM and IgG) for the presence of B. henselae. For 16 patients, serological results were not available due to a clinical decision not to request the test. B. henselae DNA positivity was detected by real-time PCR in 37.39% of patients, while 62.61% of them were negative. Thus, patients were divided into two groups: real-time PCR+ (n = 43) and real-time PCR- (n = 72). Real-time PCR screening of whole blood, biopsies, and aspirated pus revealed B. henselae positivity in 40%, 38.46%, and 35.71% of patients, respectively. When we analyzed samples by IFA, we found the presence of B. henselae in 28 out of 99 (28.28%) patients, of which 11 (11.11%) belonged to the real-time PCR+ group and 17 (17.17%) to the real-time PCR- group. Among the 71 seronegative subjects, 16 (16.16%) were found positive for B. henselae by real-time PCR. Thus, by combining the results of both assays, we were able to increase the percentage of B. henselae positive specimens from 27.27% (real-time PCR) or 28.28% (IFA) to 44.44% (real-time PCR+IFA). Altogether, these findings indicate that the early detection of B. henselae in patients with suspicious CSD through combined real-time PCR and serological analyses can lead to a more accurate diagnosis of CSD, thereby allowing prompt and appropriate disease management.
Systemic inflammation and uremic toxins (UT) determine the increased cardiovascular mortality observed in chronic hemodialysis (HD) patients. Among UT, the adipokine Chemerin induces vascular dysfunction by targeting both endothelial and vascular smooth muscular cells (EC and VSMC). As Citrate anion modulates oxidative metabolism, systemic inflammation and vascular function, we evaluated whether citrate-buffered dialysis improves HD efficiency, inflammatory parameters and chemerin-mediated microvascular injury. 45 patients were treated in sequence with acetate, citrate and, again, acetate-buffered dialysis solution (3 months per interval). At study admission and after each treatment switch, we evaluated dialysis efficacy and circulating levels of chemerin and different inflammatory biomarkers. In vitro , we stimulated EC and VSMC with patients’ plasma and we investigated the role of chemerin as UT. Citrate dialysis increased HD efficacy and reduced plasma levels of CRP, fibrinogen, IL6 and chemerin. In vitro , patients’ plasma induced EC and VSMC dysfunction. These effects were reduced by citrate-buffered solutions and paralleled by the decrease of chemerin levels. Consistently, chemerin receptor knockdown reduced EC and VSMC dysfunction. In conclusion, Switching from acetate to citrate improved dialysis efficacy and inflammatory parameters; in vitro , chemerin-induced EC and VSMC injury were decreased by using citrate as dialysis buffer.
Multidrug-resistant (MDR) Gram-negative bacteria (GNB), such as Acinetobacter and Klebsiella, are responsible for severe hospital-acquired infections. Colistin, despite its toxicity and low tissue penetration, is considered the last resort antibiotic against these microorganisms. Of concern, the use of Colistin has recently been compromised by the emergence of Colistin resistance. Herein, we developed a new formulation consisting of multifunctional chitosan-coated human albumin nanoparticles for the delivery of Colistin (Col/haNPs). Col/haNPs were in vitro characterized for encapsulation efficiency, drug release, stability and cytotoxicity and were evaluated for antibacterial activity against MDR GNB (Acinetobacter baumannii and Klebsiella pneumoniae). Col/haNPs showed sizes lower than 200 nm, high encapsulation efficiency (98.65%) and prolonged in vitro release of Colistin. The safety of the nanoformulation was demonstrated by a negligible cytotoxicity on human fibroblasts and hemolytic activity. Col/haNPs evidenced a high antibacterial effect with a significant decrease in MIC values compared to free Colistin, in particular against Col-resistant strains with a pronounced decline of bacterial growth over time. Moreover, Col/haNPs exhibited an inhibitory effect on biofilm formation that was 4 and 60 fold higher compared to free Colistin, respectively for Colistin susceptible and resistant A. baumannii. Our findings suggest that Col/haNPs could represent a promising Colistin nanocarrier with high antimicrobial activity on MDR GNB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.