Epilepsy is one of the most frequent chronic neurologic disorders that affects nearly 1% of the population worldwide, especially in developing countries. Currently, several antiepileptic drugs (AEDs) are available for its therapy, and although the prognosis is good for most patients, 20%–30% amongst them do not reach seizure freedom. Numerous factors may explain AED-resistance such as sex, age, ethnicity, type of seizure, early epilepsy onset, suboptimal dosing, poor drug compliance, alcohol abuse, and in particular, genetic factors. Specifically, the interindividual differences in drug response can be caused by single nucleotide polymorphisms (SNPs) in genes encoding for drug efflux transporters, for the brain targets of AEDs, and for enzymes involved in drug metabolism. In this review, we used the PubMed database to retrieve studies that assessed the influence of SNPs on the pharmacokinetic (PK), pharmacodynamic (PD), and efficacy of new antiepileptic drugs. Our results showed that polymorphisms in the ABCB1, ABCC2, UGT1A4, UGT2B7, UGT2B15, CYP2C9, and CYP2C19 genes have an influence on the PK and efficacy of AEDs, suggesting that a genetic pre-evaluation of epileptic patients could help clinicians in prescribing a personalized treatment to improve the efficacy and the safety of the therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.