Antiandrogen therapy is a primary treatment for patients with metastasized prostate cancer. Whilst the biologic mechanisms of antiandrogens have been extensively studied, the operating protocols used for the characterization of these drugs were not identical, limiting their comparison. Here, the antiandrogens Bicalutamide, Enzalutamide, Apalutamide, and Darolutamide were systematically compared using identical experimental setups. Androgen-dependent LNCaP and LAPC4 cells as well as androgen-independent C4-2 cells were treated with distinct concentrations of antiandrogens. Androgen receptor (AR)-mediated gene transactivation was determined using qPCR. Cell viability was measured by WST1 assay. Protein stability and AR localization were determined using western blot. Response to the tested antiandrogens across cellular backgrounds differed primarily in AR-mediated gene transactivation and cell viability. Antiandrogen treatment in LNCaP and LAPC4 cells resulted in AR protein level reduction, whereas in C4-2 cells marginal decreased AR protein was observed after treatment. In addition, AR downregulation was already detectable after 4 h, whereas reduced AR-mediated gene transactivation was not observed before 6 h. None of the tested antiandrogens displayed an advantage on the tested parameters within one cell line as opposed to the cellular background, which seems to be the primary influence on antiandrogen efficacy. Moreover, the results revealed a prominent role in AR protein stability. It is one of the first events triggered by antiandrogens and correlated with antiandrogen efficiency. Therefore, AR stability may surrogate antiandrogen response and may be a possible target to reverse antiandrogen resistance.
Prostate-specific membrane antigen (PSMA) is an essential molecular regulator of prostate cancer (PCa) progression coded by the FOLH1 gene. The PSMA protein has become an important factor in metastatic PCa diagnosis and radioligand therapy. However, low PSMA expression is suggested to be a resistance mechanism to PSMA-based imaging and therapy. Clinical studies revealed that androgen receptor (AR) inhibition increases PSMA expression. The mechanism has not yet been elucidated. Therefore, this study investigated the effect of activation and inhibition of androgen signaling on PSMA expression levels in vitro and compared these findings with PSMA levels in PCa patients receiving systemic therapy. To this end, LAPC4, LNCaP, and C4-2 PCa cells were treated with various concentrations of the synthetic androgen R1881 and antiandrogens. Changes in FOLH1 mRNA were determined using qPCR. Open access databases were used for ChIP-Seq and tissue expression analysis. Changes in PSMA protein were determined using western blot. For PSMA staining in patients’ specimens, immunohistochemistry (IHC) was performed. Results revealed that treatment with the synthetic androgen R1881 led to decreased FOLH1 mRNA and PSMA protein. This effect was partially reversed by antiandrogen treatment. However, AR ChIP-Seq analysis revealed no canonical AR binding sites in the regulatory elements of the FOLH1 gene. IHC analysis indicated that androgen deprivation only resulted in increased PSMA expression in patients with low PSMA levels. The data demonstrate that AR activation and inhibition affects PSMA protein levels via a possible non-canonical mechanism. Moreover, analysis of PCa tissue reveals that low PSMA expression rates may be mandatory to increase PSMA by androgen deprivation.
The androgen receptor (AR) plays a central role in prostate, muscle, bone and adipose tissue. Moreover, dysregulated AR activity is a driving force in prostate cancer (PCa) initiation and progression. Consequently, antagonizing AR signalling cascades via antiandrogenic therapy is a crucial treatment option in PCa management. Besides, very high androgen levels also inhibit PCa cells’ growth, so this effect could also be applied in PCa therapy. However, on the molecular and cellular level, these mechanisms have hardly been investigated so far. Therefore, the present study describes the effects of varying androgen concentrations on the viability of PCa cells as well as localization, transactivation, and protein stability of the AR. For this purpose, cell viability was determined via WST1 assay. Alterations in AR transactivity were detected by qPCR analysis of AR target genes. A fluorescent AR fusion protein was used to analyse AR localization microscopically. Changes in AR protein expression were detected by Western blot. Our results showed that high androgen concentrations reduce the cell viability in LNCaP and C4-2 cell lines. In addition, androgens have been reported to increase AR transactivity, AR localization, and AR protein expression levels. However, high androgen levels did not reduce these parameters. Furthermore, this study revealed an androgen-induced increase in AR protein synthesis. In conclusion, inhibitory effects on cell viability by high androgen levels are due to AR downstream signalling or non-genomic AR activity. Moreover, hormonal activation of the AR leads to a self-induced stabilization of the receptor, resulting in increased AR activity. Therefore, in clinical use, a therapeutic reduction in androgen levels represents a clinical target and would lead to a decrease in AR activity and, thus, AR-driven PCa progression.
As the state of resection margins is an important prognostic factor after extirpation of colorectal liver metastases, surgeons aim to obtain negative margins, sometimes elaborated by resections of the positive resection plane after intraoperative frozen sections. However, this is time consuming and results sometimes remain unclear during surgery. Label-free multimodal multiphoton microscopy (MPM) is an optical technique that retrieves morpho-chemical information avoiding all staining and that can potentially be performed in real-time. Here, we investigated colorectal liver metastases and hepatic tissue using a combination of three endogenous nonlinear signals, namely: coherent anti-Stokes Raman scattering (CARS) to visualize lipids, two-photon excited fluorescence (TPEF) to visualize cellular patterns, and second harmonic generation (SHG) to visualize collagen fibers. We acquired and analyzed over forty thousand MPM images of metastatic and normal liver tissue of 106 patients. The morphological information with biochemical specificity produced by MPM allowed discriminating normal liver from metastatic tissue and discerning the tumor borders on cryosections as well as formalin-fixed bulk tissue. Furthermore, automated tissue type classification with a correct rate close to 95% was possible using a simple approach based on discriminant analysis of texture parameters. Therefore, MPM has the potential to increase the precision of resection margins in hepatic surgery of metastases without prolonging surgical intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.