The possibility to increase the efficiency of photovoltaic (PV) cells based on hybrid carbon nanotube (CNT)–Si heterojunctions is related to the ability to control the chemical properties of the CNT–Si interface and of the CNT bundle layer. In spite of the encouraging performances of PV cells based on multiwall (MW) CNT, so far few efforts have been made in the study of this device compared to single wall (SW) CNT–Si interfaces. Here, surface and interface effects on the current–voltage characteristic curves of MW CNT–Si hybrid junctions are investigated through exposure to HF vapors and to 10 ppm-NO2 and compared to the effects detected in SW CNT–Si junctions. Quite similar results in terms of open circuit voltage, short circuit current density, and efficiency are found for both cells, suggesting that exposure to HF vapors mostly affects the interface chemical properties, i.e., the silicon oxidation state, that in both junctions reach an optimal state about 50 h after etching. In turn, NO2 exposure has larger effects on the SW-based cell, consistently with the larger surface-to-volume ratio of SW with respect to MW. In both cases, the efficiency value reaches a maximum after 28 min, before dropping when the NO2 molecules desorb from the surface. A combined analysis of current–voltage curves and photoemission data collected along the different phases of gas exposures allowed us to relate changes in the electrical properties to the chemistry of Si at the interface.
Photovoltaic (PV) cells based on single-walled carbon nanotube (SWCNT)/silicon (Si) and multiwalled carbon nanotube (MWCNT)/Si junctions were tested under exposure to NH3 in the 0–21 ppm concentration range. The PV cell parameters remarkably changed upon NH3 exposure, suggesting that these junctions, while being operated as PV cells, can react to changes in the environment, thereby acting as NH3 gas sensors. Indeed, by choosing the open-circuit voltage, VOC, parameter as read-out, it was found that these cells behaved as gas sensors, operating at room temperature with a response higher than chemiresistors developed on the same layers. The sensitivity was further increased when the whole current–voltage (I–V) curve was collected and the maximum power values were tracked upon NH3 exposure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.