The intersystem crossing (ISC) mechanism of a cyclic (alkyl)(amino) carbene gold (I) complex (CMA1) is studied using quantum dynamics. A model spin-vibronic Hamiltonian is developed, which includes 10 excited states and two important nuclear degrees of freedom. The quantum dynamics reveals that ISC from S → T occurs on the tens of picosecond time scale, consistent with recent experiments. It is driven by motion along the torsional degree of freedom of the carbazole (Cz) ligand, which causes orthogonality between the donor and acceptor groups closing the gap between the initial (S) and final (T) states. The role of higher triplet states through spin-vibronic interactions is also discussed. Although previous calculations, evaluated in the Condon approximation, yield large ISC rates, our present dynamical treatment, taking into account the large amplitude torsional motion, increases the calculated rate by an order of magnitude improving the agreement with experiments. The model spin-vibronic Hamiltonian developed can also be used to understand the properties of related linear metal carbene compounds, facilitating molecular design.
Advances in experimental methodology aligned with technological developments, such as 3rd generation light sources, X-ray Free Electron Lasers, and High Harmonic Generation, have led to a paradigm shift in the capability of X-ray spectroscopy to deliver high temporal and spectral resolution on an extremely broad range of samples in a wide array of different environments. Importantly, the complex nature and high information content of this class of techniques mean that detailed theoretical studies are often essential to provide a firm link between the spectroscopic observables and the underlying molecular structure and dynamics. In this paper, we present approaches for simulating dynamical processes in X-ray spectroscopy based upon on-the-fly quantum dynamics with a Gaussian basis set. We show that it is possible to provide a fully quantum description of X-ray spectra without the need of precomputing highly multidimensional potential energy surfaces. It is applied to study two different dynamical situations, namely, the core-hole lifetime dynamics of the water monomer and the dissociation of CF + 4 recently studied using pump-probe X-ray spectroscopy. Our results compare favourably to previous experiments, while reducing the computational effort, providing the scope to apply them to larger systems. https://doi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.