Low-resource settings are disproportionately burdened by infectious diseases and antimicrobial resistance. Good quality clinical bacteriology through a well functioning reference laboratory network is necessary for effective resistance control, but low-resource settings face infrastructural, technical, and behavioural challenges in the implementation of clinical bacteriology. In this Personal View, we explore what constitutes successful implementation of clinical bacteriology in low-resource settings and describe a framework for implementation that is suitable for general referral hospitals in low-income and middle-income countries with a moderate infrastructure. Most microbiological techniques and equipment are not developed for the specific needs of such settings. Pending the arrival of a new generation diagnostics for these settings, we suggest focus on improving, adapting, and implementing conventional, culture-based techniques. Priorities in low-resource settings include harmonised, quality assured, and tropicalised equipment, consumables, and techniques, and rationalised bacterial identification and testing for antimicrobial resistance. Diagnostics should be integrated into clinical care and patient management; clinically relevant specimens must be appropriately selected and prioritised. Open-access training materials and information management tools should be developed. Also important is the need for onsite validation and field adoption of diagnostics in low-resource settings, with considerable shortening of the time between development and implementation of diagnostics. We argue that the implementation of clinical bacteriology in low-resource settings improves patient management, provides valuable surveillance for local antibiotic treatment guidelines and national policies, and supports containment of antimicrobial resistance and the prevention and control of hospital-acquired infections.
Storage iron deficiency is a major contributor to anemia in high-intensity S. japonicum infection. A high prevalence of anemia without iron deficiency, exclusion of other mechanisms of anemia, and the evidence of low bioavailable iron suggest that anemia of inflammation contributes to S. japonicum-associated anemia at all infection intensities.
Iron deficiency and anemia in school-attending girls in western Kenya were more prevalent than in developed countries, but considerably less prevalent than in preschool children and pregnant women from the same study area. Our findings are consistent with other recent school-based surveys from western Kenya, but not with recent community- and school-based cross-sectional surveys from other parts of sub-Saharan Africa. It deserves further study to determine if adolescent girls not attending school are at higher risk of anemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.