The CLOU performance of the CaTi x Mn 0.9-x Mg 0.1 O 3 (CMTM) perovskite-type system was investigated, comparing materials produced at laboratory scale with those made at industrial ton scale. The CLOU and conversion performances were studied by a micropacked bed reactor, and crystalline phase structure and homogeneity and bulk density identified as the most important parameters affecting the performance of the OCM. Bulk density is correlated with the sintering temperature, atmosphere and time at sintering temperature, while phase homogeneity is a function of the raw materials chosen, agglomeration method and sintering procedure. Specific challenges are identified in the control of slurry homogeneity and sintering conditions in upscaled production. The degree of sintering affects the chemo-mechanical properties of the material (crushing strength and attrition index), physical properties (specific surface area), and more importantly the crystalline phases formed and their homogeneity: the quantity of ''active'' crystalline phases present directly determines the thermochemical conversion properties (i.e., CLOU capacity and methane conversion), oxygen transfer capacity and kinetics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.