Insights into the pathophysiology of Parkinson's disease continue to grow. At the same time, it is becoming clear that some patients may in fact deteriorate with treatment. Future research should focus on the development and evaluation of multifactorial fall prevention strategies.
BackgroundHuman stance involves multiple segments, including the legs and trunk, and requires coordinated actions of both. A novel method was developed that reliably estimates the contribution of the left and right leg (i.e., the ankle and hip joints) to the balance control of individual subjects.MethodsThe method was evaluated using simulations of a double-inverted pendulum model and the applicability was demonstrated with an experiment with seven healthy and one Parkinsonian participant. Model simulations indicated that two perturbations are required to reliably estimate the dynamics of a double-inverted pendulum balance control system. In the experiment, two multisine perturbation signals were applied simultaneously. The balance control system dynamic behaviour of the participants was estimated by Frequency Response Functions (FRFs), which relate ankle and hip joint angles to joint torques, using a multivariate closed-loop system identification technique.ResultsIn the model simulations, the FRFs were reliably estimated, also in the presence of realistic levels of noise. In the experiment, the participants responded consistently to the perturbations, indicated by low noise-to-signal ratios of the ankle angle (0.24), hip angle (0.28), ankle torque (0.07), and hip torque (0.33). The developed method could detect that the Parkinson patient controlled his balance asymmetrically, that is, the right ankle and hip joints produced more corrective torque.ConclusionThe method allows for a reliable estimate of the multisegmental feedback mechanism that stabilizes stance, of individual participants and of separate legs.
Pasma JH, Boonstra TA, Campfens SF, Schouten AC, Van der Kooij H. Sensory reweighting of proprioceptive information of the left and right leg during human balance control. J Neurophysiol 108: 1138-1148, 2012. First published May 23, 2012 doi:10.1152/jn.01008.2011.-To keep balance, information from different sensory systems is integrated to generate corrective torques. Current literature suggests that this information is combined according to the sensory reweighting hypothesis, i.e., more reliable information is weighted more strongly than less reliable information. In this approach, no distinction has been made between the contributions of both legs. In this study, we investigated how proprioceptive information from both legs is combined to maintain upright stance. Healthy subjects maintained balance with eyes closed while proprioceptive information of each leg was perturbed independently by continuous rotations of the support surfaces (SS) and the human body by platform translation. Two conditions were tested: perturbation amplitude of one SS was increased over trials while the other SS 1) did not move or 2) was perturbed with constant amplitude. With the use of system identification techniques, the response of the ankle torques to the perturbation amplitudes (i.e., the torque sensitivity functions) was determined and how much each leg contributed to stabilize stance (i.e., stabilizing mechanisms) was estimated. Increased amplitude of one SS resulted in a decreased torque sensitivity. The torque sensitivity to the constant perturbed SS showed no significant differences. The properties of the stabilizing mechanisms remained constant during perturbations of each SS. This study demonstrates that proprioceptive information from each leg is weighted independently and that the weight decreases with perturbation amplitude. Weighting of proprioceptive information of one leg has no influence on the weight of the proprioceptive information of the other leg. According to the sensory reweighting hypothesis, vestibular information must be up-weighted, because closing the eyes eliminates visual information. system identification; system identification; posture; asymmetry BALANCE IS DESCRIBED as the ability to maintain upright posture in a gravitational field (Niam et al. 1999) and is involved in many daily life activities, such as bipedal stance, walking, and cycling. For small deviations, the gravitational pull effectively is a negative stiffness; a deviation from a perfect upright position results in a torque that accelerates the body further away from this position. External mechanical disturbances, such as a misstep or a slip, and conflicting information of the sensory systems can disturb the equilibrium of the balance system. The central nervous system (CNS) has to cope with these disturbances to maintain the body in upright position.The CNS receives feedback about the body orientation from three main sensory systems: the visual, proprioceptive, and vestibular systems. The CNS integrates this sensory feedback and subseq...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.