The growing need for activated carbon requires alternative raw materials to replace non-renewable raw materials whose existence is decreasing. Biomass is a very promising precursor, one of which is from rice bran. This research concerns the development of activated carbon derived from rice bran. Carbonization was carried out at 600 O C and physically activated with nitrogen flow rates of 150 mL/min for 40, 80, and 120 minutes. The activated carbons produced (AC-D40, AC-D80, and AC-D120) were characterized to determine the surface properties, surface morphology, and adsorption capacity for nitrogen and blue methylene adsorptions. The results showed that activated carbon that activated for 80 minutes (AC-D80) had the best characteristics. With a pore surface area of 109.389 m 2 /g, a pore volume of 0.083 cm 3 /g, and pores that mostly distributed in the micropore area, this activated carbon has the highest adsorption for nitrogen (53.874 cm 3 /g) and methylene blue (87.560 mg/g) adsorptions compared to activated carbon with activation times of 40 minutes (AC-D40) and 120 minutes (AC-D120).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.