Arterial conduits are increasingly preferred for surgical bypass because of inherent functional properties conferred by arterial endothelial cells, especially nitric oxide production in response to physiologic stimuli. Here we tested whether endothelial progenitor cells (EPCs) can replace arterial endothelial cells and promote patency in tissue-engineered small-diameter blood vessels (4 mm). We isolated EPCs from peripheral blood of sheep, expanded them ex vivo and then seeded them on decellularized porcine iliac vessels. EPC-seeded grafts remained patent for 130 days as a carotid interposition graft in sheep, whereas non-seeded grafts occluded within 15 days. The EPC-explanted grafts exhibited contractile activity and nitric-oxide-mediated vascular relaxation that were similar to native carotid arteries. These results indicate that EPCs can function similarly to arterial endothelial cells and thereby confer longer vascular-graft survival. Due to their unique properties, EPCs might have other general applications for tissue-engineered structures and in treating vascular diseases.
The cancer stem cell hypothesis posits that malignant growth arises from a rare population of progenitor cells within a tumor that provide it with unlimited regenerative capacity. Such cells also possess increased resistance to chemotherapeutic agents. Resurgence of chemoresistant disease after primary therapy typifies epithelial ovarian cancer and may be attributable to residual cancer stem cells, or cancer-initiating cells, that survive initial treatment. As the cell surface marker CD133 identifies cancerinitiating cells in a number of other malignancies, we sought to determine the potential role of CD133 þ cells in epithelial ovarian cancer. We detected CD133 on ovarian cancer cell lines, in primary cancers and on purified epithelial cells from ascitic fluid of ovarian cancer patients. We found CD133 þ ovarian cancer cells generate both CD133 þ and CD133À daughter cells, whereas CD133À cells divide symmetrically. CD133 þ cells exhibit enhanced resistance to platinum-based therapy, drugs commonly used as first-line agents for the treatment of ovarian cancer. Sorted CD133 þ ovarian cancer cells also form more aggressive tumor xenografts at a lower inoculum than their CD133À progeny. Epigenetic changes may be integral to the behavior of cancer progenitor cells and their progeny. In this regard, we found that CD133 transcription is controlled by both histone modifications and promoter methylation. Sorted CD133À ovarian cancer cells treated with DNA methyltransferase and histone deacetylase inhibitors show a synergistic increase in cell surface CD133 expression. Moreover, DNA methylation at the ovarian tissue active P2 promoter is inversely correlated with CD133 transcription. We also found that promoter methylation increases in CD133À progeny of CD133 þ cells, with CD133 þ cells retaining a less methylated or unmethylated state. Taken together, our results show that CD133 expression in ovarian cancer is directly regulated by epigenetic modifications and support the idea that CD133demarcates an ovarian cancer-initiating cell population. The activity of these cells may be epigenetically detected and such cells might serve as pertinent chemotherapeutic targets for reducing disease recurrence.
Background-An estimated 275 000 patients undergo heart valve replacement each year. However, existing solutions for valve replacement are complicated by the morbidity associated with lifelong anticoagulation of mechanical valves and the limited durability of bioprostheses. Recent advances in tissue engineering and our understanding of stem cell biology may provide a lifelong solution to these problems. Methods and Results-Mesenchymal stem cells were isolated from ovine bone marrow and characterized by their morphology and antigen expression through immunocytochemistry, flow cytometry, and capacity to differentiate into multiple cell lineages. A biodegradable scaffold was developed and characterized by its tensile strength and stiffness as a function of time in cell-conditioned medium. Autologous semilunar heart valves were then created in vitro using mesenchymal stem cells and the biodegradable scaffold and were implanted into the pulmonary position of sheep on cardiopulmonary bypass. The valves were evaluated by echocardiography at implantation and after 4 months in vivo.Valves were explanted at 4 and 8 months and examined by histology and immunohistochemistry. Valves displayed a maximum instantaneous gradient of 17.2Ϯ1.33 mm Hg, a mean gradient of 9.7Ϯ1.3 mm Hg, an effective orifice area of 1.35Ϯ0.17 cm 2 , and trivial or mild regurgitation at implantation. Gradients changed little over 4 months of follow-up. Histology showed disposition of extracellular matrix and distribution of cell phenotypes in the engineered valves reminiscent of that in native pulmonary valves. Conclusions-Stem-cell tissue-engineered heart valves can be created from mesenchymal stem cells in combination with a biodegradable scaffold and function satisfactorily in vivo for periods of Ͼ4 months. Furthermore, such valves undergo extensive remodeling in vivo to resemble native heart valves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.