Abstract. We have examined cell cycle control of anchorage-independent growth in nontransformed fibroblasts. In previous studies using Go-synchronized NRK and NIH-3T3 cells, we showed that anchorageindependent growth is regulated by an attachmentdependent transition at G1/S that resembles the START control point in the cell cycle of Saccharomyces cerevisiae. In the studies reported here, we have synchronized NRK and NIH-3T3 fibroblasts immediately after this attachment-dependent transition to determine if other portions of the fibroblast cell cycle are similarly regulated by adhesion. Our results show that S-, G2-, and M-phase progression proceed in the absence of attachment. Thus, we conclude that the adhesion requirement for proliferation of these cells can be explained in terms of the single START-like transition. In related studies, we show that TGF-/~I overrides the attachment-dependent transition in NRK and AKR-2B fibroblasts (lines in which TGF-/$1 induces anchorageindependent growth), but not in NIH-3T3 or Balb/c 3T3 fibroblasts (lines in which TGF-/31 fails to induce anchorage-independent growth). These results show that (a) adhesion and TGF-/31 can have similar effects in stimulating cell cycle progression from G1 to S and (b) the differential effects of TGF-fll on anchorageindependent growth of various fibroblast lines are directly reflected in the differential effects of the growth factor at G1/S. Finally, we have randomly mutagenized NRK fibroblasts to generate mutant lines that have lost their attachment/TGF-~l requirement for G1/S transit while retaining their normal mitogen requirements for proliferation. These clones, which readily proliferate in mitogen-supplemented soft agar, appear non-transformed in monolayer: they are well spread, nonrefractile, and contact inhibited. The existence of this new fibroblast phenotype demonstrates (a) that the growth factor and adhesion/TGF-~/1 requirements for cell cycle progression are genetically separable, (b) that the two major control points in the fibroblast cell cycle (G0/G1 and G1/S) are regulated by distinct extracellular signals, and (c) that the genes regulating anchorage-independent growth need not be involved in regulating contact inhibition, focus formation, or growth factor dependence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.