Transition metal nanoclusters have been greatly investigated in various areas such as catalysis, energy conversion and sensing due to their unique chemical, optical, structural, and electronic properties. Doping monometallic clusters with other metals offer the opportunity to enhance these properties. Extensive work has been done on late transition metal clusters i.e., noble and platinum metals. However, less work has been done on titanium metal clusters. The structural properties of TiN-1Pt (N = 2 – 16) clusters have been investigated using the density functional theory method with the PBEsol exchange-correlation functional. Our results showed that the binding energies for both systems decrease with cluster size N. The Ti12Pt cluster was found to be more enhanced in comparison with pure Ti revealed by the binding energy, relative stability and dissociation energy. Furthermore, binding, relative stability and dissociation energies were found to be enhanced as compared to the energies for Ti monometallic clusters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.