The study considers the propagation of surface waves on the stress-free surface of a porous solid saturated with non-viscous fluid. The surface pores have the option of being either sealed or fully-opened. With the presence of dilatant cracks, the interior of the porous solid is characterised through three different crack-regimes, based on the connections between embedded cracks. Secular equations are derived in closed form for the propagation of Rayleigh waves in the porous media with sealed or fullyopened surface pores. The velocity of non-dispersive surface waves varies significantly with the density of cracks present. However, aspect (thickness to radius) ratio of (circular) cracks may not have much effect on the velocity of Rayleigh waves. The opening of surface pores may be an important reason for a faster propagation of Rayleigh waves in any realistic elastic medium. Finally, the dilatancy due to the growth of cracks up to their interconnection or drainage may be able to affect the velocity of Rayleigh waves quite significantly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.