This note concerns nonlinear ill-posedness of the Prandtl equation and an invalidity of asymptotic boundary layer expansions of incompressible fluid flows near a solid boundary. Our analysis is built upon recent remarkable linear illposedness results established by Gérard-Varet and Dormy and an analysis by Guo and Tice. We show that the asymptotic boundary layer expansion is not valid for nonmonotonic shear layer flows in Sobolev spaces. We also introduce a notion of weak well-posedness and prove that the nonlinear Prandtl equation is not well-posed in this sense near nonstationary and nonmonotonic shear flows. On the other hand, we are able to verify that Oleinik's monotonic solutions are well-posed.
In this paper, we construct growing modes of the linearized Navier-Stokes equations about generic stationary shear flows of the boundary layer type in a regime of sufficiently large Reynolds number: R → ∞. Notably, the shear profiles are allowed to be linearly stable at the infinite Reynolds number limit, and so the instability presented is purely due to the presence of viscosity. The formal construction of approximate modes is well-documented in physics literature, going back to the work of Heisenberg, C.C. Lin, Tollmien, Drazin and Reid, but a rigorous construction requires delicate mathematical details, involving for instance a treatment of primitive Airy functions and singular solutions. Our analysis gives exact unstable eigenvalues and eigenfunctions, showing that the solution could grow slowly at the rate of e t/ √ R . A new, operator-based approach is introduced, avoiding to deal with matching inner and outer asymptotic expansions, but instead involving a careful study of singularity in the critical layers by deriving pointwise bounds on the Green function of the corresponding Rayleigh and Airy operators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.