IEEE 802.11ah is a new sub-GHz Wi-Fi technology that provides several advantages over traditional Wi-Fi such as a higher communication range, enhanced scalability, and lower energy consumption, however at the cost of substantially lower throughput. With the aim of simultaneously benefiting from multiple Wi-Fi technologies, recent proposals suggest combining a number of these technologies into a single device. This, however, compromises the energy efficiency of the device, as it implies concurrent utilization of different radio access interfaces. To mitigate this issue, the device should utilize the interface of a certain technology only when there is a high probability of establishing communication over that technology. Traditional vertical handover algorithms are not designed for this purpose as they rely on continuous beacon listening or active probing, even if the device is not in the range of a given technology. To address this issue, vertical handover algorithms based on the combination of devices' physical locations and either Radio Environmental Maps (REM) or propagation modeling have been proposed. Moreover, their suitability and encouraging performance have been demonstrated for a number of the established Low-Power Wide-Area Network (LPWAN) technologies. However, their appropriateness for Wi-Fi-based networks with IEEE 802.11ah is currently unknown, which provides the main motivation for this work. Specifically, we carry out an extensive experimental performance evaluation of two locationbased vertical handover algorithms in the context of Wi-Fi-based networks with IEEE 802.11ah. Our results demonstrate the feasibility of location-based handovers in this context. We base our findings on the fact that location-based algorithms can maintain comparable data communication quality as the beacon listeningbased baseline, while simultaneously reducing the utilization of the IEEE 802.11ah and IEEE 802.11n radio access interfaces by a factor of 2 and 10, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.