We use a symmetry-motivated approach to analysing X-ray pair distribution functions to study the mechanism of negative thermal expansion in two ReO3-like compounds; ScF3 and CaZrF6. Both average and local structure suggest that it is the flexibility of M-F-M linkages (M = Ca, Zr, Sc) due to dynamic rigid and semi-rigid "scissoring" modes that facilitates the observed NTE behaviour. The amplitudes of these dynamic distortions are greater for CaZrF6 than for ScF3, which corresponds well with the larger magnitude of the thermal expansion reported in the literature for the former. We show that this flexbility is enhanced in CaZrF6 due to the rock-salt ordering mixing the characters of two of these scissoring modes. Additionally, we show that in ScF3 anharmonic coupling between the modes responsible for the structural flexibility and the rigid unit modes contributes to the unusually high NTE behaviour in this material.
A novel symmetry-adapted pair distribution function analysis (SAPA) method for extracting information on local distortions from pair distribution function data is introduced. The implementation of SAPA is demonstrated in the TOPAS-Academic software using the freely available online software ISODISTORT, and scripts for converting the output from ISODISTORT to a SAPA input file for TOPAS are provided. Finally, two examples are provided to show how SAPA can evaluate the nature of both dynamic distortions in ScF3 and the distortions which act as an order parameter for the phase transitions in BaTiO3.
Mechanochemically synthesized dual cation hybrid perovskites of the form (CsxMA1−x)Pb(Cl/Br)3 (x = 0–1) exhibit complete miscibility and high structural order across each compositional range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.