Porous molecular materials combine benefits such as convenient processability and the possibility for atom-precise structural fine-tuning which makes them remarkable candidates for specialty applications in the areas of gas separation, catalysis, and sensing. In order to realize the full potential of these materials and guide future molecular design, knowledge of the transition from molecular properties into materials behavior is essential. In this work, the class of compounds termed cycloparaphenylenes (CPPs)shape-persistent macrocycles with built-in cavities and radially oriented π-systemswas selected as a conceptually simple class of intrinsically porous nanocarbons to serve as a platform for studying the transition from analyte sorption properties of small aggregates to those of bulk materials. In our detailed investigation, two series of CPPs were probed: previously reported hoop-shaped [n]CPPs and a novel family of all-phenylene figure-8 shaped (lemniscal) bismacrocycles, termed spiro[n,n]CPPs. A series of nanocarbons with different macrocycle sizes and heteroatom content have been prepared by atom-precise organic synthetic methods, and their structural, photophysical, and electronic attributes were disclosed. Detailed experimental studies (X-ray crystallography, gas sorption, and quartz-crystal microbalance measurements) and quantum chemical calculations provided ample evidence for the importance of the solid-state arrangement on the porosity and analyte uptake ability of intrinsically porous molecular nanocarbons. We demonstrate that this molecular design principle, i.e., incorporation of sterically demanding spiro junctions into the backbone of nanohoops, enables the manipulation of solid-state morphology without significantly changing the nature and size of the macrocyclic cavities. As a result, the novel spiro[n,n]CPPs showed a remarkable performance as high affinity material for vapor analyte sensing.
The electronic structure of surface-supported organometallic networks with Ag-bis-acetylide bonds that are intermediate products in the bottom-up synthesis of graphdiyne and graphdiyne-like networks were studied. Scanning tunneling microscopy (STM) and spectroscopy (STS) reveal a frontier, unoccupied electronic state that is delocalized along the entire organometallic network and proves the covalent nature of the Ag-bis-acetylide bonds. Density-functional theory (DFT) calculations corroborate the spatial distribution of the observed delocalized state and attribute it to band mixing of carbon and silver atoms combined with n-doping of the metal surface. The metal-bis-acetylide bonds are typical metal-organic bonds with mixed character containing covalent and strong ionic contributions. Moreover, the organometallic networks exhibit a characteristic graphene-like band structure with linear band dispersion at each K point.
An ew class of macrocyclic angle-strained alkynes whose size and reactivity can be precisely tuned by modular organic synthesis is disclosed. Detailed analysis of the sizedependent structural and electronic properties provides evidence for considerable distortion of the alkyne units incorporated into the cycloparaphenylene (CPP)-derived macrocycles. The remarkable increase of the alkyne reactivity with decreasing macrocycle size in [2+ +2]cycloaddition-retrocyclization was investigated by joint experimental and theoretical studies and the thermodynamic and kinetic parameters that govern this reaction were unraveled. Additionally,e ven the largest, least strained macrocycle in this series was found to undergo strainpromoted azide-alkyne cycloaddition (SPAAC) efficiently under mild conditions,t herebyp aving the way to the application of alkyne-containing CPPs as fluorescent "clickable" macrocyclic architectures.Supportinginformation and the ORCID identification number(s) for the author(s) of this article can be found under: https://doi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.