In this work, we address the problem of blocking in the context of author name disambiguation. We describe a framework that formalizes different ways of name-matching to determine which names could potentially refer to the same author. We focus on name variations that follow from specifying a name with different completeness (i.e. full first name or only initial). We extend this framework by a simple way to define traditional, new and custom blocking schemes. Then, we evaluate different old and new schemes in the Web of Science. In this context we define and compare a new type of blocking schemes. Based on these results, we discuss the question whether name-matching can be used in blocking evaluation as a replacement of annotated author identifiers. Finally, we argue that blocking can have a strong impact on the application and evaluation of author disambiguation.
This work addresses the problem of author name homonymy in the Web of Science. Aiming for an efficient, simple and straightforward solution, we introduce a novel probabilistic similarity measure for author name disambiguation based on feature overlap. Using the researcher-ID available for a subset of the Web of Science, we evaluate the application of this measure in the context of agglomeratively clustering author mentions. We focus on a concise evaluation that shows clearly for which problem setups and at which time during the clustering process our approach works best. In contrast to most other works in this field, we are skeptical towards the performance of author name disambiguation methods in general and compare our approach to the trivial single-cluster baseline. Our results are presented separately for each correct clustering size as we can explain that, when treating all cases together, the trivial baseline and more sophisticated approaches are hardly distinguishable in terms of evaluation results. Our model shows state-of-the-art performance for all correct clustering sizes without any discriminative training and with tuning only one convergence parameter.
In this paper, we present an overview of the MOVING platform, a user-driven approach that enables young researchers, decision makers, and public administrators to use machine learning and data mining tools to search, organize, and manage large-scale information sources on the web such as scientific publications, videos of research talks, and social media. In order to provide a concise overview of the platform, we focus on its front end, which is the MOVING web application. By presenting the main components of the web application, we illustrate what functionalities and capabilities the platform offer its end-users, rather than delving into the data analysis and machine learning technologies that make these functionalities possible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.