Lipid bilayer membranes--ubiquitous in biological systems and closely associated with cell function--exhibit rich shape-transition behaviour, including bud formation and vesicle fission. Membranes formed from multiple lipid components can laterally separate into coexisting liquid phases, or domains, with distinct compositions. This process, which may resemble raft formation in cell membranes, has been directly observed in giant unilamellar vesicles. Detailed theoretical frameworks link the elasticity of domains and their boundary properties to the shape adopted by membranes and the formation of particular domain patterns, but it has been difficult to experimentally probe and validate these theories. Here we show that high-resolution fluorescence imaging using two dyes preferentially labelling different fluid phases directly provides a correlation between domain composition and local membrane curvature. Using freely suspended membranes of giant unilamellar vesicles, we are able to optically resolve curvature and line tension interactions of circular, stripe and ring domains. We observe long-range domain ordering in the form of locally parallel stripes and hexagonal arrays of circular domains, curvature-dependent domain sorting, and membrane fission into separate vesicles at domain boundaries. By analysing our observations using available membrane theory, we are able to provide experimental estimates of boundary tension between fluid bilayer domains.
The membrane raft hypothesis postulates the existence of lipid bilayer membrane heterogeneities, or domains, supposed to be important for cellular function, including lateral sorting, signaling, and trafficking. Characterization of membrane lipid heterogeneities in live cells has been challenging in part because inhomogeneity has not usually been definable by optical microscopy. Model membrane systems, including giant unilamellar vesicles, allow optical fluorescence discrimination of coexisting lipid phase types, but thus far have focused on coexisting optically resolvable fluid phases in simple lipid mixtures. Here we demonstrate that giant plasma membrane vesicles (GPMVs) or blebs formed from the plasma membranes of cultured mammalian cells can also segregate into micrometer-scale fluid phase domains. Phase segregation temperatures are widely spread, with the vast majority of GPMVs found to form optically resolvable domains only at temperatures below Ϸ25°C. At 37°C, these GPMV membranes are almost exclusively optically homogenous. At room temperature, we find diagnostic lipid phase fluorophore partitioning preferences in GPMVs analogous to the partitioning behavior now established in model membrane systems with liquid-ordered and liquid-disordered fluid phase coexistence. We image these GPMVs for direct visual characterization of protein partitioning between coexisting liquidordered-like and liquid-disordered-like membrane phases in the absence of detergent perturbation. For example, we find that the transmembrane IgE receptor FcRI preferentially segregates into liquid-disordered-like phases, and we report the partitioning of additional well known membrane associated proteins. Thus, GPMVs now provide an effective approach to characterize biological membrane heterogeneities.liquid-disordered ͉ liquid-ordered ͉ membrane domains ͉ membrane heterogeneity ͉ rafts
The observation of phase separation in intact plasma membranes isolated from live cells is a breakthrough for research into eukaryotic membrane lateral heterogeneity, specifically in the context of membrane rafts. These observations are made in giant plasma membrane vesicles (GPMVs), which can be isolated by chemical vesiculants from a variety of cell types and microscopically observed using basic reagents and equipment available in any cell biology laboratory. Microscopic phase separation is detectable by fluorescent labeling, followed by cooling of the membranes below their miscibility phase transition temperature. This protocol describes the methods to prepare and isolate the vesicles, equipment to observe them under temperature-controlled conditions and three examples of fluorescence analysis: (i) fluorescence spectroscopy with an environment-sensitive dye (laurdan); (ii) two-photon microscopy of the same dye; and (iii) quantitative confocal microscopy to determine component partitioning between raft and nonraft phases. GPMV preparation and isolation, including fluorescent labeling and observation, can be accomplished within 4 h.
Fluorescence microscopy imaging is an important technique for studying lipid membranes and is increasingly being used for examining lipid bilayer membranes, especially those showing macroscopic coexisting domains. Lipid phase coexistence is a phenomenon of potential biological significance. The identification of lipid membrane heterogeneity by fluorescence microscopy relies on membrane markers with well-defined partitioning behavior. While the partitioning of fluorophores between gel and liquid-disordered phases has been extensively characterized, the same is not true for coexisting liquid phases. We have used fluorescence microscopy imaging to examine a large variety of lipid membrane markers for their liquid phase partitioning in membranes with various lipid compositions. Most fluorescent lipid analogs are found to partition strongly into the liquid-disordered (L(d)) phase. In contrast, some fluorescent polycyclic aromatic hydrocarbons with a flat ring system were found to partition equally, but others partition preferentially into liquid-ordered (L(o)) phases. We have found these fluorescent markers effective for identification of coexisting macroscopic membrane phases in ternary lipid systems composed of phospholipids and cholesterol.
Biological membranes are known to contain compositional heterogeneities, often termed rafts, with distinguishable composition and function, and these heterogeneities participate in vigorous transport processes. Membrane lipid phase coexistence is expected to modulate these processes through the differing mechanical properties of the bulk domains and line tension at phase boundaries. In this contribution, we compare the predictions from a shape theory derived for vesicles with fluid phase coexistence to the geometry of giant unilamellar vesicles with coexisting liquid-disordered (L(d)) and liquid-ordered (L(o)) phases. We find a bending modulus for the L(o) phase higher than that of the L(d) phase and a saddle-splay (Gauss) modulus difference with the Gauss modulus of the L(o) phase being more negative than the L(d) phase. The Gauss modulus critically influences membrane processes that change topology, such as vesicle fission or fusion, and could therefore be of significant biological relevance in heterogeneous membranes. Our observations of experimental vesicle geometries being modulated by Gaussian curvature moduli differences confirm the prediction by the theory of Juelicher and Lipowsky.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.