This work reports on the synthesis and in-depth electrochemical and photochemical characterization of two chromium(0) and molydenum(0) metal complexes with bidentate pyridyl-mesoionic carbene (MIC) ligands of the 1,2,3-triazol-5ylidene type and carbonyl coligands. Metal complexes with MIC ligands have turned out to have very promising electrocatalytic and photochemical properties, but examples of MIC-containing complexes with early-transition-metal centers remain extremely rare. The electrochemistry of these new MIC complexes was studied by cyclic voltammetry and especially spectroelectrochemistry in the IR region consistent with a mainly metal-centered oxidation, which is fully reversible in the case of the chromium(0) complex. At the same time, the two reduction steps are predominantly ligandcentered according to the observed near-IR absorbance, with the first reduction step being reversible for both systems. The results of the electron paramagnetic resonance studies on the oxidized and reduced species confirm the IR spectroelectrochemistry experiments. The photochemical reactivity of the complexes with a series of organic ligands was investigated by time-resolved (stepscan) Fourier transform infrared (FTIR) spectroscopy. Interestingly, the photoreactions in pyridine and acetonitrile are fully reversible with a slow dark reverse reaction back to the educt species over minutes and even hours, depending on the metal center and reagent. This reversible behavior is in contrast to the expected loss of one or several CO ligands known from related homoleptic as well as heteroleptic M(CO) 4 L 2 α-diimine transition-metal complexes.
The development of NIR emitters based on earthabundant elements is an important goal in contemporary science. We present here Cr(0), Mo(0), and W(0) carbonyl complexes with a pyridyl-mesoionic carbene (MIC) based ligand. A detailed photophysical investigation shows that all the complexes exhibit dual emissions in the VIS and in the NIR region. The emissive excited states are assigned to two distinct triplet states by time-resolved emission and step-scan FTIR spectroscopy at variable temperature, supported by density functional theory. In particular, the NIR emissive triplet state exhibits unprecedented lifetimes of up to 600 � 10 ns and quantum yields reaching 1.7 • 10 À 4 at room temperature. These are the first examples of Cr(0), Mo(0) and W(0) complexes that emit in the NIR II region.
The [4+2] cycloaddition reaction between 2-pyrone and Me Si-C≡P gives the corresponding 2-(trimethylsilyl)-λ -phosphinine in good yields as a rather air and moisture stable, colorless oil. Insight into the regioselectivity of the pericyclic reaction was obtained with the help of deuterium-labeling experiments. The silyl-phosphinine acts as a ligand for the preparation of a Cu(I) and the first crystallographically characterized phosphinine-Ag(I) complex. The title compound was further used as a starting material for an alternative preparation of the parent phosphinine C H P by means of protodesilylation with HCl. C H P reacts with CuBr⋅S(CH ) to give an infinite Cu(I)Br coordination polymer. DFT calculations shed light on the influence of the -Si(CH ) group on the electronic properties of the aromatic phosphorus heterocycle.
A gold(III) complex with the hitherto most electron poor mesoionic carbene ligand is presented. Aqua regia was the oxidizing agent of choice for the synthesis of this unusual organometallic compound. The Au III complex is redox-rich and also acts as a catalyst for oxazole formation, delivering selectively a completely different isomer in comparison to its Au I congener.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.