The Antarctic ice sheet has been losing mass over the past decades through the accelerated flow of its glaciers conditioned by ocean temperature and bed topography. Glaciers retreating along retrograde slopes (i.e., bed elevation drops in the inland direction) are potentially unstable, whereas subglacial ridges slow down the glacial retreat. Despite major advances in mapping subglacial bed topography, significant sectors of Antarctica remain poorly resolved and critical spatial details are missing. Here we present a novel, high-resolution, and physically-based description of Antarctic bed topography using mass conservation. Our results reveal previously unknown basal features with major implications for glacier response
The SuperCDMS experiment is designed to directly detect weakly interacting massive particles (WIMPs) that may constitute the dark matter in our Galaxy. During its operation at the Soudan Underground Laboratory, germanium detectors were run in the CDMSlite mode to gather data sets with sensitivity specifically for WIMPs with masses <10 GeV=c 2 . In this mode, a higher detector-bias voltage is applied to amplify the phonon signals produced by drifting charges. This paper presents studies of the experimental noise and its effect on the achievable energy threshold, which is demonstrated to be as low as 56 eV ee (electron equivalent energy). The detector-biasing configuration is described in detail, with analysis corrections for voltage variations to the level of a few percent. Detailed studies of the electric-field geometry, and the resulting successful development of a fiducial parameter, eliminate poorly measured events, yielding an energy resolution ranging from ∼9 eV ee at 0 keV to 101 eV ee at ∼10 keV ee . New results are derived for astrophysical uncertainties relevant to the WIMP-search limits, specifically examining how they are affected by variations in the most probable WIMP velocity and the Galactic escape velocity. These variations become more important for WIMP masses below 10 GeV=c 2 . Finally, new limits on spin-dependent low-mass WIMP-nucleon interactions are derived, with new parameter space excluded for WIMP masses ≲3 GeV=c 2 .
Calculating the abundance of thermally produced dark matter particles has become a standard procedure, with sophisticated methods guaranteeing a precision that matches the percent-level accuracy in the observational determination of the dark matter density. Here, we point out that one of the main assumptions in the commonly adopted formalism, namely local thermal equilibrium during the freeze-out of annihilating dark matter particles, does not have to be satisfied in general. We present two methods for how to deal with such situations, in which the kinetic decoupling of dark matter happens so early that it interferes with the chemical decoupling process: i) an approximate treatment in terms of a coupled system of differential equations for the leading momentum moments of the dark matter distribution, and ii) a full numerical solution of the Boltzmann equation in phase-space. For illustration, we apply these methods to the case of Scalar Singlet dark matter. We explicitly show that even in this simple model the prediction for the dark matter abundance can be affected by up to one order of magnitude compared to the traditional treatment.
The Cryogenic Dark Matter Search low ionization threshold experiment (CDMSlite) searches for interactions between dark matter particles and germanium nuclei in cryogenic detectors. The experiment has achieved a low energy threshold with improved sensitivity to low-mass (<10 GeV/c 2) dark matter particles. We present an analysis of the final CDMSlite data set, taken with a different detector than was used for the two previous CDMSlite data sets. This analysis includes a data "salting" method to protect against bias, improved noise discrimination, background modeling, and the use of profile likelihood methods to search for a dark matter signal in the presence of backgrounds. We achieve an energy threshold of 70 eV and significantly improve the sensitivity for dark matter particles with masses between 2.5 and 10 GeV/c 2 compared to previous analyses. We set an upper limit on the dark matter-nucleon scattering cross section in germanium of 5.4×10 −42 cm 2 at 5 GeV/c 2 , a factor of ∼2.5 improvement over the previous CDMSlite result.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.