Denial constraints (DCs) are a generalization of many other integrity constraints (ICs) widely used in databases, such as key constraints, functional dependencies, or order dependencies. Therefore, they can serve as a unified reasoning framework for all of these ICs and express business rules that cannot be expressed by the more restrictive IC types. The process of formulating DCs by hand is difficult, because it requires not only domain expertise but also database knowledge, and due to DCs' inherent complexity, this process is tedious and error-prone. Hence, an automatic DC discovery is highly desirable: we search for all valid denial constraints in a given database instance. However, due to the large search space, the problem of DC discovery is computationally expensive. We propose a new algorithm Hydra, which overcomes the quadratic runtime complexity in the number of tuples of state-of-the-art DC discovery methods. The new algorithm's experimentally determined runtime grows only linearly in the number of tuples. This results in a speedup by orders of magnitude, especially for datasets with a large number of tuples. Hydra can deliver results in a matter of seconds that to date took hours to compute.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.