Diagnosis of breast nonmass lesions, most notably ductal carcinoma in situ, is challenging. Recent studies show that dynamic contrast enhanced MRI achieves high sensitivity in diagnosis of nonmass lesions. Unlike successfully applied to diagnose mass lesions, particularly kinetic features are reported to be less effective in discriminating nonmass lesions. It is even difficult for human observers to differentiate nonmass lesions against the enhancing parenchymal or benign lesions due to their sometimes similar morphology and contrast kinetics. Towards an automated computer-aided diagnosis system of nonmass lesions, we implemented an extendable and completely automated framework that is efficient and modularized, aiming to discriminate detected suspicious regions into malignant and benign. The entire framework consists of five sequentially executed modules: motion correction, segmentation of breast regions, detection of suspicious regions, feature extraction, and knowledge-based analysis of suspicious regions. A preliminary test was performed on a data set collecting 162 nonmass lesions extracted from 67 patients, which achieved an area under ROC curve value of 0.74 for malignant lesions
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.