The classical Kuramoto model consists of finitely many pairwise coupled oscillators on the circle. In many applications a simple pairwise coupling is not sufficient to describe real-world phenomena as higher-order (or group) interactions take place. Hence, we replace the classical coupling law with a very general coupling function involving higher-order terms. Furthermore, we allow for multiple populations of oscillators interacting with each other through a very general law. In our analysis, we focus on the characteristic system and the mean-field limit of this generalized class of Kuramoto models. While there are several works studying particular aspects of our program, we propose a general framework to work with all three aspects (higher-order, multi-population, and mean-field) simultaneously. Assuming identical oscillators in each population, we derive equations for the evolution of oscillator populations in the mean-field limit. First, we clarify existence and uniqueness of our set of characteristic equations, which are formulated in the space of probability measures together with the bounded-Lipschitz metric. Then, we investigate dynamical properties within the framework of the characteristic system. We identify invariant subspaces and stability of the state, in which all oscillators are synchronized within each population. Even though it turns out that this so called all-synchronized state is never asymptotically stable, under some conditions and with a suitable definition of stability, the all-synchronized state can be proven to be at least locally stable. In summary, our work provides a rigorous mathematical framework upon which the further study of multi-population higher-order coupled particle systems can be based.
Coupled map lattices (CMLs) are prototypical dynamical systems on networks/graphs. They exhibit complex patterns generated via the interplay of diffusive/Laplacian coupling and nonlinear reactions modelled by a single iterated map at each node; the maps are often taken as unimodal, e.g., logistic or tent maps. In this letter, we propose a class of higher-order coupled dynamical systems involving the hypergraph Laplacian, which we call coupled hypergraph maps (CHMs). By combining linearized (in-)stability analysis of synchronized states, hypergraph spectral theory, and numerical methods, we detect robust regions of chaotic cluster synchronization occurring in parameter space upon varying coupling strength and the main bifurcation parameter of the unimodal map. Furthermore, we find key differences between Laplacian and hypergraph Laplacian coupling and detect various other classes of periodic and quasi-periodic patterns. The results show the high complexity of coupled graph maps and indicate that they might be an excellent universal model class to understand the similarities and differences between dynamics on classical graphs and dynamics on hypergraphs.
The classical Kuramoto model consists of finitely many pairwisely coupled oscillators on the circle. In many applications a simple pairwise coupling is not sufficient to describe real-world phenomena as higher-order (or group) interactions take place. Hence, we replace the classical coupling law with a very general coupling function involving higher-order terms. Furthermore, we allow for multiple populations of oscillators interacting with each other through a very general law. In our analysis, we focus on the characteristic system and the mean-field limit of this generalized class of Kuramoto models. While there are several works studying particular aspects of our program, we propose a general framework to work with all three aspects (higher-order, multi-population, and mean-field) simultaneously. In this article, we investigate dynamical properties within the framework of the characteristic system. We identify invariant subspaces of synchrony patterns and study their stability. It turns out that the so called all-synchronized state, which is one special synchrony pattern, is never asymptotically stable. However, under some conditions and with a suitable definition of stability, the all-synchronized state can be proven to be at least locally stable. In summary, our work provides a rigorous mathematical framework upon which the further study of multi-population higher-order coupled particle systems can be based.
In this work, a novel approach for the reliable and efficient numerical integration of the Kuramoto model on graphs is studied. For this purpose, the notion of order parameters is revisited for the classical Kuramoto model describing all-to-all interactions of a set of oscillators. First numerical experiments confirm that the precomputation of certain sums significantly reduces the computational cost for the evaluation of the right-hand side and hence enables the simulation of high-dimensional systems. In order to design numerical integration methods that are favourable in the context of related dynamical systems on network graphs, the concept of localized order parameters is proposed. In addition, the detection of communities for a complex graph and the transformation of the underlying adjacency matrix to block structure is an essential component for further improvement. It is demonstrated that for a submatrix comprising relatively few coefficients equal to zero, the precomputation of sums is advantageous, whereas straightforward summation is appropriate in the complementary case. Concluding theoretical considerations and numerical comparisons show that the strategy of combining effective community detection algorithms with the localization of order parameters potentially reduces the computation time by several orders of magnitude.
In this paper, we study a certain class of nonlocal partial differential equations (PDEs). The equations arise from a key problem in network science, i.e., network generation from local interaction rules, which result in a change of the degree distribution as time progresses. The evolution of the generating function of this degree distribution can be described by a nonlocal PDE. To address this equation we will rigorously convert it into a local first order PDE. Then, we use theory of characteristics to prove solvability and regularity of the solution. Next, we investigate the existence of steady states of the PDE. We show that this problem reduces to an implicit ODE, which we subsequently analyze. Finally, we perform numerical simulations, which show stability of the steady states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.