BackgroundGaucher disease (GD) is the most common lysosomal storage disorder (LSD). Based on a deficient β-glucocerebrosidase it leads to an accumulation of glucosylceramide. Standard diagnostic procedures include measurement of enzyme activity, genetic testing as well as analysis of chitotriosidase and CCL18/PARC as biomarkers. Even though chitotriosidase is the most well-established biomarker in GD, it is not specific for GD. Furthermore, it may be false negative in a significant percentage of GD patients due to mutation. Additionally, chitotriosidase reflects the changes in the course of the disease belatedly. This further enhances the need for a reliable biomarker, especially for the monitoring of the disease and the impact of potential treatments.MethodologyHere, we evaluated the sensitivity and specificity of the previously reported biomarker Glucosylsphingosine with regard to different control groups (healthy control vs. GD carriers vs. other LSDs).FindingsOnly GD patients displayed elevated levels of Glucosylsphingosine higher than 12 ng/ml whereas the comparison controls groups revealed concentrations below the pathological cut-off, verifying the specificity of Glucosylsphingosine as a biomarker for GD. In addition, we evaluated the biomarker before and during enzyme replacement therapy (ERT) in 19 patients, demonstrating a decrease in Glucosylsphingosine over time with the most pronounced reduction within the first 6 months of ERT. Furthermore, our data reveals a correlation between the medical consequence of specific mutations and Glucosylsphingosine.InterpretationIn summary, Glucosylsphingosine is a very promising, reliable and specific biomarker for GD.
Pneumolysin, a virulence factor of Streptococcus pneumoniae with cytotoxic and proinflammatory activities, occurs at concentrations from 0.85 to 180 ng/ml in cerebrospinal fluid (CSF) of meningitis patients. In pneumococcal cultures and in a rabbit meningitis model, the concentrations of pneumolysin in supernatant and CSF were lower after addition of nonbacteriolytic bactericidal antibiotics (rifampin and clindamycin) than after incubation with ceftriaxone.
Background and Purpose-Strokes have especially devastating implications if they occur early in life; however, only limited information exists on the characteristics of acute cerebrovascular disease in young adults. Although risk factors and manifestation of atherosclerosis are commonly associated with stroke in the elderly, recent data suggests different causes for stroke in the young. We initiated the prospective, multinational European study Stroke in Young Fabry Patients (sifap) to characterize a cohort of young stroke patients. Methods-Overall, 5023 patients aged 18 to 55 years with the diagnosis of ischemic stroke (3396) *Drs Rolfs, Fazekas and Grittner contributed equally to this work. Authors contributions: Dr Rolfs has conceptualized, initiated, and designed and organized the study, has been involved in the recruitment of the patients, and wrote significant parts of the manuscript. Dr Fazekas was involved in the study planning and has done together with Drs Enzinger and Schmidt the analysis of all MRI scans; this group was mainly involved in the statistical analysis of the MRI data. Drs Martus, Grittner, Holzhausen have taken responsibility for all statistical analysis and for the data structure of the total data bank. Drs Dichgans, Böttcher, Tatlisumak, Tanislav, Jungehulsing, Putaala, Huber, Bodechtel, Lichy, Hennerici, Kaps, Meyer, Kessler have been most active in the recruitment of the patients, drafting the manuscript and significantly influencing the scientific discussion. Dr Heuschmann was involved in drafting the manuscript and influencing the scientific discussion. Dr Norrving chaired the steering and publication committees of sifap, has written parts of the manuscript, and has significantly influenced the scientific discussions. Drs Lackner and Paschke, H. Mascher, Dr Riess have been involved in the laboratory analyses. Dr Kolodny has mostly contributed to the discussion of the Fabry cases. Dr Giese assisted in writing and editing the manuscript. All authors have reviewed, critically revised and approved the final version of the manuscript.The sponsors of the study had no role in the study design, data collection, data analysis, interpretation, writing of the manuscript, or the decision to submit the manuscript for publication. The academic authors had unrestricted access to the derived dataset, and assume full responsibility for the completeness, integrity, and interpretation of the data, as well as writing the study report and the decision to submit for publication.†Listed in Appendix I in the online-only Data Supplement. Jeffrey L. Saver, MD, was guest editor for this article.
Multiple sclerosis is thought to be a polygenic disease driven by dysregulation of the immune system leading to an autoimmune response against one or several antigens of cerebral white matter tissue. Experimental autoimmune encephalomyelitis (EAE) is a mouse model that is used to study the aetiology and pathogenesis of multiple sclerosis and new therapeutic approaches. We used oligonucleotide microarrays to determine gene expression profiles of the inflamed spinal cords of EAE mice at the onset and at the peak of the disease. Of the approximately 11 000 genes studied, 213 were regulated differentially and 100 showed consistent differential regulation throughout the disease. Inflammation resulted in a profile of increased gene expression of immune-related molecules, extracellular matrix and cell adhesion molecules and molecules involved in cell division and transcription, and differential regulation of molecules involved in signal transduction, protein synthesis and metabolism. Of the 104 genes with defined chromosomal locations, 51 mapped to known EAE-linked quantitative trait loci and as such are putative candidate genes for susceptibility to EAE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.